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1

A little background

Smooth-Particle Hydrodynamics (SPH) was first developed in the seventies by Lucy [1] and Gingold
and Monaghan [2] in the astrophysical context as a means to simulate the formation of stars. The
principle of SPH is to approximate a continuous field using a discrete set of kernel functions which
are centred about so-called particles, where the physical properties of the system, e.g. mass, internal
energy, or velocity, are located. When the SPH approximation is applied to fluid flow or solid body
deformation, solutions to the underlying set of partial differential equations are obtained in terms
of simple algebraic equations. As no auxiliary computational grid is used to construct the solution,
SPH is termed a mesh-free method. The absence of a mesh implies that arbitrarily large deformations
and instability phenomena such as fracture can be handled with ease when compared to mesh-based
techniques such as the Finite Element method (FEM). FEM requires geometrically well-defined mesh
cells and certain assumptions regarding the smoothness of the field within these cells. Because both
of these requirements are typically violated in the simulation of important engineering applications
such as impact, explosion, or machine cutting, a continued interest in the development of meshfree
methods prevails.

The application of SPH to fluid problems with free boundaries has been very successful. In partic-
ular, solutions to large-scale gas dynamic problems have been obtained in astrophysics [3], and fluid-
structure interaction in civil engineering applications, such as the impact of a water wave on coastal
structures, has been treated with success [4]. However, for solid body deformations, the situation is
not equally satisfying. In 1991, Libersky [5] was the first to simulate a body with material strength us-
ing SPH. Strong numerical instability issues appeared which prevented SPH from becoming a serious
competitor to mesh-based methods for solid continua. Different sources of instability were identified
by early works: Swegle [6] noted that the interaction of the second derivative of the kernel and the ten-
sile stress resulted in nonphysical clumping of particles, which he termed tensile instability. Dyka et al
[7] observed that the nodal integration approach inherent to SPH incurs instabilities. In essence, the
number of integration points is too small such that the solution to the underlying equilibrium equa-
tion becomes non-unique due to rank deficiency. They proposed to eliminate the rank-deficiency by
introducing additional integration points at other locations that the particles themselves and noted
that this kind of instability is also observed in FEM, when elements with a reduced number of inte-
gration points are used. In FEM, the instability emerging from this rank-deficiency problem is termed
hour-glassing. Rank deficiency occurs regardless of the state of stress and in addition to the tensile
instability. A number of different schemes were devised to increase the stability of SPH. Artificial vis-
cosity and Riemann-type solvers increase numerical stability by dissipating high-frequency modes.
Conservative smoothing [8] and the XSPH time integration scheme [9] are dispersive rather than dis-
sipative but also work by removing high-frequency modes. Randles et al [10] elaborated on the idea
of introducing additional stress points to remove the rank-deficiency problem. The clumping prob-
lem associated with tensile instability was addressed by Gray et al. [11] by adding repulsive forces
between SPH particles if the principal stresses are tensile. However, none of these approaches turned
SPH into a simulation method that is generally stable for a broad range of applications.

A turning point was achieved by Belytschko et al. [12], who showed that the Eulerian character
of the kernel function (other particles pass through a particle’s kernel domain as the simulation pro-
ceeds) in combination with the Lagrangian character of the moving SPH particles (they move in a
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fixed frame of reference) is the cause of the tensile instability. They proposed a Lagrangian formula-
tion where the kernel approximation is performed in the initial, undeformed reference coordinates of
the material. In this Lagrangian formulation, the tensile instability is absent, however, other instabil-
ities due to rank-deficiency caused by the collocation method remain. Belytschko et al also showed
that the remaining instabilities can be removed by the addition of stress points, but the locations
of the stress points needs to be carefully chosen. The invention of Lagrangian SPH has prompted
a revived interest in this particular meshless method, resulting in several studies which confirm its
enhanced stability [13, 14, 15, 16, 17]. However, the idea of using additional integration points ap-
pears not to have found widespread usage in the SPH community. Possible causes might be related
to the increased computational effort required for evaluating the stresses and a lack of information as
to where stress points should be placed if irregular particle positions are employed for the reference
configuration.

In this work, it is demonstrated how instabilities caused by the rank-deficiency can be directly
controlled. The inspiration for taking such an approach to stabilise the solution originates from ideas
developed for the Finite Element Method (FEM). There, elements with a reduced number of inte-
gration points are routinely employed because they are computationally very effective and avoid the
shear locking problems of fully integrated elements. Such reduced-integrated elements are suscepti-
ble to so-called hourglass modes, which are zero-energy modes in the sense that the element deforms
without an associated increase of the elastic (potential) energy. These modes cannot be detected if a
reduced number of integration points is used, and can therefore be populated with arbitrary amounts
of kinetic energy, such that the solution is entirely dominated by theses modes. A common approach
to suppress the hour-glassing modes is to identify them as the non-linear part of the velocity field and
penalise them by appropriate means. It is difficult in general to seek analogies between the SPH collo-
cation method and FEM. However, in the case of the so-called mean (or constant) stress element [18],
which uses only one integration point to represent the average stress state within the entire element,
there exists a clear analogy to the weighted average over the neighbouring particles that is obtained
in SPH. It is this analogy that will be exploited in order to develop a zero-energy mode suppression
algorithm for SPH.

The remainder of this article is organised as follows. In the next section, a brief review of the La-
grangian SPH formalism is given. This is followed by the details as to how an SPH analogue of the non-
linear part of the deformation field can be used to obtain an algorithm which effectively suppresses
zero-energy modes. The usefulness of the stabilisation algorithm is subsequently demonstrated with
a number of large strain deformation examples, that are difficult, if not impossible, to obtain using
Lagrangian SPH without additional stress points. Finally, the implications of this particular type of
stabilisation technique are discussed, and an outlook is given regarding possible improvements.
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2

The total Lagrangian formulation

In the Total Lagrangian formulation, conservation equations and constitutive equations are expressed
in terms of the reference coordinates X , which are taken to be the coordinates of the initial, unde-
formed reference configuration. A mapping φ between the current coordinates, and the reference
coordinates describes the body motion at time t :

x=φ(X , t ), (2.1)

Here, x are the current, deformed coordinates and X the reference (Lagrangian) coordinates. The
displacement u is given by

u=x−X , (2.2)

Note that bold mathematical symbols like the preceding ones denote vectors or tensors, while the
same mathematical symbol in non-bold font refers to their respective Euclidean norm, e.g. x = |x|.
The conservation equations for mass, impulse, and energy in the total Lagrangian formulation are
given by

ρ J = ρ0 (2.3)

ü = 1

ρ0
∇0 ·P T (2.4)

ė = 1

ρ0
Ḟ :P , (2.5)

where ρ is the mass density, P is the first Piola-Kirchhoff stress tensor, e is the internal energy, and
∇ is the gradient or divergence operator. The subscript 0 indicates that a quantity is evaluated in the
reference configuration, while the absence of this subscript means that the current configuration is
to be used. J is the determinant of the deformation gradientF ,

F = dx

dX
= du

dX
+I , (2.6)

which can be interpreted as the transformation matrix that describes the rotation and stretch of a line
element from the reference configuration to the current configuration.

2.1 The SPH Approximation in the total Lagrangian formulation

The SPH approximation for a scalar function f in terms of the reference coordinates can be written
as

f (Xi ) = ∑
j∈S

V 0
j f (X j )Wi

(
Xi j

)
(2.7)

The sum extends over all particles within the range of a scalar weight function Wi , which is centred
at position Xi and depends only on the distance vector between coordinates Xi and X j . Here,
exclusively radially symmetric kernels are considered, i.e., Wi

(
Xi j

) = Wi
(
Xi j

)
which depend only

on the scalar distance between particles i and j . V 0 is the volume associated with a particle in the
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reference configuration. The weight function is chosen to have compact support, i.e., it includes only
neighbours within a certain radial distance. This domain of influence is denoted S .

The SPH approximation of a derivative of f is obtained by operating directly with the gradient
operator on the kernel functions,

∇0 f (Xi ) = ∑
j∈S

V 0
j f (X j )∇Wi

(
Xi j

)
, (2.8)

where the gradient of the kernel function is defined as follows:

∇Wi (Xi j ) =
(

dW (Xi j )

dXi j

)
X j −Xi

Xi j
(2.9)

It is of fundamental interest to characterise numerical approximation methods in terms of the order
of completeness, i.e., the order of a polynomial that can be exactly approximated by the method. For
solving the conservation equations with its differential operators, at least first-order completeness is
required. In the case of the SPH approximation, the conditions for zeroth- and first-order complete-
ness are stated as follows: ∑

j∈S

V 0
j Wi

(
Xi j

)= 1 (2.10)∑
j∈S

V 0
j ∇Wi

(
Xi j

)= 0 (2.11)

The basic SPH approach given by equations (2.7) and (2.8) fulfils neither of these completeness con-
ditions. An ad-hoc improvement by Monaghan [19] consists of adding eqn. (2.11) to eqn. (2.8), such
that a symmetrized approximation for the derivative of a function is obtained,

∇0 f (Xi ) = ∑
j∈S

V 0
j

(
f (X j )− f (Xi )

)
∇Wi

(
Xi j

)
(2.12)

The symmetrisation does not result in first-order completeness, however, it yields zeroth-order com-
pleteness for the derivatives of a function, even in the case of irregular particle arrangements [15].

2.2 First-Order Completeness

In order to fulfil first-order completeness, the SPH approximation has to reproduce the constant gra-
dient of a linear field. A number of correction techniques [10, 20, 21] exploit this condition as the
basis for correcting the gradient of the SPH weight function,∑

j∈S

V 0
j (X j −Xi )⊗∇Wi (Xi j )

!= I , (2.13)

where I is the diagonal unit matrix. Based on this expression, a corrected kernel gradient can be
defined:

∇̃Wi (Xi j ) =L−1
i ∇Wi (Xi j ), (2.14)

which uses the correction matrixL, given by:

Li =
∑

j∈S

V 0
j ∇Wi (Xi j )⊗ (X j −Xi ). (2.15)

By construction, the corrected kernel gradient now satisfy eqn. (2.13),∑
j∈S

V 0
j (X j −Xi )⊗L−1

i ∇Wi (Xi j ) = I , (2.16)

resulting in first-order completeness.
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2.3 Total-Lagrangian SPH expressions for Solid Mechanics

For calculating the internal forces of a solid body subject to deformation, expressions are required for
(i) the deformation gradient, (ii) a constitutive equation which provides a stress tensor as function of
the deformation gradient, and (iii) an expression for transforming the stresses into forces acting on
the nodes which serve as the discrete representation of the body.

2.3.1 the Deformation Gradient and its time derivative

The deformation gradient is obtained by calculating the spatial derivative of the displacement field,
i.e. by using the symmetrized SPH derivative approximation, eqn. (2.12), for eqn. (2.6):

Fi =
∑

j∈S

V 0
j (u j −ui)⊗L−1

i ∇Wi (Xi j )+I . (2.17)

Note that in the above equation, the corrected kernel gradients have been introduced. Similarly, the
time derivative of F is obtained by considering the spatial derivative of the velocity field:

Ḟi =
∑

j∈S

V 0
j (v j −vi)⊗L−1

i ∇Wi (Xi j ). (2.18)

2.3.2 Constitutive models and time integration of the stress rate

The constitutive model is independent of the numerical discretization and therefore no essential part
of the SPH method. However, some important relations are quoted for clarity and the reader is re-
ferred to the excellent textbooks by Bonet and Wood [22] or Belytschko et al [23]. In USER-SMD, con-
stitutive models are expressed using a strain rate and the Cauchy stress rate. The Cauchy stress is ob-
tained by integrating the stress rate in time. This approach allows for a proper handling of non-linear
material behaviour, such as plasticity or damage. However, the time integration of the stress rate is
plagued by the problem of non-objectivity, which can be summarised by the following inequality:

σ 6=
∫
σ̇dt . (2.19)

The problem is caused by the presence of finite rotations in the stress rate. As a solution, we adopt
the approach detailed in [24] and time-integrate an unrotated stress rate, which is obtained by sub-
tracting the rotation components of the current deformation state. The correct Cauchy stress is sub-
sequently rotated back to to agree with the current deformation of the system. To this end, we obtain
the velocity gradient as

L= Ḟ F −1, (2.20)

from which we compute the rate-of-deformation tensor,

D = 1

2
(L+LT ). (2.21)

The rotation is obtained from a polar decomposition of the deformation gradient,

F =RU , (2.22)

whereR is a pure rotation tensor, i.e. R−1 =RT and det(R) = 1. WithR known, the unrotated part
of the rate-of-deformation tensor, i.e. the stretch rate tensor is computed:

d=RTDR. (2.23)

A constitutive model relates the unrotated stress rate to the stretch rate tensor. For illustratory pur-
poses we consider Hookean linear elasticity, with the Lamé parameters λ and µ:

σ̇u =λTr{d}+2µd (2.24)
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Note that Tr{d} = di i /3 denotes the trace of d. The unrotated stress is the time integral of the unro-
tated stress rate,

σu =
∫
σ̇udt , (2.25)

and we obtain the correct Cauchy stress by rotating the unrotated Cauchy stress back to the current
deformation state:

σ =RσuRT . (2.26)

The Cauchy stress is the proper stress measure for the deformed configuration. However, in the total
Lagrangian Formulation, nodal forces are applied by a stress integration method which is formulated
using the reference coordinates. Therefore, a stress measure is required which links the stress in the
reference configuration to the current configuration. This stress measure is the First Piola-Kirchhoff
stress, given by

P = JσF −T . (2.27)

2.3.3 Nodal Forces

Nodal forces are obtained from an SPH approximation of the stress divergence, eqn. (2.4). Several
different approximations can be obtained [25], depending on how the discretization is performed.
The most frequently used expression, which is variationally consistent in the sense that it minimises
elastic energy [20], is the following,

fi =
∑

j∈S

V 0
i V 0

j

(
P j +Pi

)
∇Wi (Xi j ), (2.28)

where the stress tensors are added to each other rather than subtracted from each other. For a ra-
dially symmetric kernel which depends only on distance, the anti-symmetry property ∇Wi (Xi j ) =
−∇W j (X j i ) holds. Therefore, the above force expression will conserve linear momentum exactly, as
fi j =−f j i . The anti-symmetry property of the kernel gradient is used to rewrite the force expression
as follows:

fi = ∑
j∈S

V 0
i V 0

j

(
Pi∇Wi (Xi j )+P j∇Wi (Xi j )

)
(2.29)

= ∑
j∈S

V 0
i V 0

j

(
Pi∇Wi (Xi j )−P j∇W j (X j i )

)
. (2.30)

Replacing the uncorrected kernel gradients with the corrected gradients (c.f. eqn. (2.14), the following
expression is obtained:

fi =
∑

j∈S

V 0
i V 0

j

(
PiL

−1
i ∇Wi (Xi j )−P jL

−1
j ∇W j (X j i )

)
(2.31)

This first-order corrected force expression also conserves linear momentum due to its anti-symmetry
with respect to interchange of the particle indices i and j , i.e., fi j =−f j i . The here constructed anti-
symmetric force expression is usually not seen in the literature. In contrast, it seems to be customary
[10, 20, 21] to directly insert the corrected kernel gradient into eqn. (2.28), which destroys the local
conservation of linear momentum. This section is summarised by noting that all expressions for
Total-Lagrangian SPH have now been defined. The next section will introduce an SPH analogue of
the hour-glassing control mechanism used in FEM.

2.4 Updating the reference configuration

The total Lagrangian formulation can be used for elastic deformations with significantly large strains.
Under an elastic deformation, the topology, i.e., how material points are connected with each other,
does not change. However, if plastic flow is considered, the topology does change. To reflect this
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change in topology, the reference configuration must be updated at certain time intervals. This is
achieved in re-initialising the reference coordinates with the current coordinates, and updating the
particle volume.

X ← x (2.32)

V ← JV (2.33)

Following these changes, the next evaluation of the deformation gradient will result in the identity
matrix, as all displacements w.r.t the new reference configuration are zero. Nevertheless, the system
has not lost its memory of its deformation, as the stress state is still known: In an attempt to minimise
the stress, the system will try to return to its initial configuration. However, the strain information,
which is computed fromF would be lost. To circumvent this problem, we keep track of the deforma-
tion gradient before performing an update of the reference configuration:

F0 ←F0F .

Note that initially, F0 = I . The current total deformation gradient, reflecting the deformation since
the last update (F ) and all updates before the last update (F0) is then given by

Ft =F0F . (2.34)
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3

The updated Lagrangian formulation

... This is work in progress.
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4

Installation instructions

4.1 Obtaining the code

SMOOTH MACH DYNAMICS is a part of LAMMPS, which can be downloaded from this website:

http://lammps.sandia.gov/download.html

This user guide assumes that you download a TAR archive file (also known as a tarball) and work
in a Linux shell. Extract the archive in any convenient folder, e.g. like this:

shell $> tar -xzf lammps_stable.tar.gz

You will end up with a folder named "lammps-15May15" or similar.

SMOOTH MACH DYNAMICS makes extensive use of linear algebra calculations. These are handled us-
ing the Eigen library, which is not part of LAMMPS and therefore has to be downloaded and installed
separately. Download the lastest stable release from:

http://eigen.tuxfamily.org

You should receive a file named similar to eigen-eigen-bdd17ee3b1b3.tar.gz and extract it within
the lammps-15May15/lib directory:

shell $> cd lammps-15May15/lib
shell $> tar -xzf ~/Downloads/eigen-eigen-bdd17ee3b1b3.tar.gz
shell $> mv eigen-eigen-bdd17ee3b1b3 smd

The last command changes the name of the current Eigen version to a name (smd) which is known to
the build scripts in LAMMPS. It is well possible that either the LAMMPSor Eigen version numbers change
in the future. Therefore, the commands shown above will not be exactly correct but you should pro-
ceed in a similar fashion. Please contact the author of this document if anything remains unclear.
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4.2 Building the code

For compilation, a standard recent Linux installation should suffice (Ubuntu 14.04 with Clang 3.5.0
has been tested ok, GCC 4.6.3 on Ubunt 12.04 is known not to compile SMD correctly, however, Clang
3.4-1 on Ubuntu 12.04 works fine). Change to the lammps-15May15/src directory and issue the fol-
lowing commands:

shell $> make stubs
shell $> make yes-user-smd
shell $> make serial

This will create the executable lmp_serial with all USER-SMD capabilities enabled. Additional exe-
cutables for multiprocessor systems may be generated using the mpi or similar make targets, however,
such a build setup is outside the scope of this document.
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5

Simulation examples

5.1 Tensile loading of a rubber strip

. This example serves to illustrate the basic features of Total-Lagrangian SPH. A 2d strip of an elastic
material is elongated by pulling two opposite edges apart at a quasi-static velocity. Due to Poisson’s ef-
fect, the material contracts and a non-homogeneous distribution of stress is established. The follow-
ing input script (located within the examples/USER/smd/rubber_strip_pull-directory) creates an
initial geometry, applies boundary conditions, defines output quantities and invokes the required
pair style and and time integration fixes.

The script starts with the definition of material parameters. This includes the Young’s modulus,
Poisson ratio, and mass density. Additionally, viscosity and hourglass control coefficients are defined
her. Following this, the simulation is initialized with the atom_style smd, which provides the necce-
sary data structures for SPH.

The initial geometry of the rubber strip is defined as a quadratic lattice with spacing 1 mm. The
SPH kernel diameter is set to three times this value, such that approximately 20 neighbours interact
with each particle. Note that the argument of the set diameter command is really the radius of
the SPH smmothing kernel, and not the diameter as one might be tempted to think. The use of the
"si" unit system does not imply that physical units of kilogrammes, meters, and second need to be
employed. Rather, any physical system of units which is consistent, may be used. Here, we opt for
GPa, mm, and ms. A velocity boundary condition is implemented by creating individual groups for
the top and bottom rows of particles. These groups of particles are subsequently pulled apart via the
fix smd/setvel command to effect tensile loading.

The material is modelled using the Total-Lagrangian pair style smd/tlsph. The *COMMON keyword
is mandatory and defines quantities which are not related to a specific material model. This also in-
clude Young’s modulus and Poisson ratio, which are infinitesimal strain quantities and thus indeed
independent from the functional form of the material model. The parameters Q1 and Q2 define the
coefficients for the linear and quadratic part of the artificial viscosity. In most cases, the values 0.06
and 0, respectively, provide good results. The parameter hg is the dimensionless hourglass control
coefficient, which should be chosen in the range of 10 ... 100. Finally, the parameter Cp defines the
specific heat capacity, which is used by some material models to calculate a temperature from the
particle’s internal energy. Here, its value does not matter. The second and third keywords activate a
linear material model, i.e., Hookean linear elasticity, both for deviatoric (shear) and dilational (vol-
umetric) deformation. The required parameters are taken from the *COMMON keyword section. Note
that the pressure relation can be chosen completely independent from the material strength model,
i.e., the USER-SMD code performs a decomposition of the material behaviour into the equation of state
(*EOS...) and the shear response (*STRENGTH...) model.

The Cauchy stress and the number of interacting neighbours for each particle are obtained us-
ing compute commands and written to the dump file. The engineering strain and stress, i.e., the
global measures for these quantities are calculated as variables and written to a separate file using
the fix print command.

Time integration of the system is performed via the fix smd/integrate_tlsph command. In
the given form with no arguments, the reference configuration for the Total-Lagrangian is fixed at
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the initial coordinates of time-step zero and never changed during the course of the simulation. At
every time-step, a stable time increment for the explicit Velocity-Verlet integration approach used by
LAMMPS is computed by the fix smd/adjust_dt command.

Input file for tensile simulation

####################################################################################################
#
# TLSPH example: elongate a 2d strip of a linear elastic material py pulling its ends apart
#
# unit sytem: GPa / mm / ms
#
####################################################################################################

####################################################################################################
# MATERIAL PARAMETERS
####################################################################################################
variable E equal 1.0 # Young’s modulus
variable nu equal 0.3 # Poisson ratio
variable rho equal 1 # initial mass density
variable q1 equal 0.06 # standard artificial viscosity linear coefficient
variable q2 equal 0.0 # standard artificial viscosity quadratic coefficient
variable hg equal 10.0 # hourglass control coefficient
variable cp equal 1.0 # heat capacity of material -- not used here

####################################################################################################
# INITIALIZE LAMMPS
####################################################################################################
dimension 2
units si
boundary sm sm p # simulation box boundaries
atom_style smd
atom_modify map array
comm_modify vel yes
neigh_modify every 10 delay 0 check yes # re-build neighbor list every 10 steps
newton off

####################################################################################################
# CREATE INITIAL GEOMETRY
####################################################################################################
variable l0 equal 1.0 # lattice spacing for creating particles
lattice sq ${l0}
region box block -10 10 -10 10 -0.1 0.1 units box
create_box 1 box
create_atoms 1 box
group tlsph type 1

####################################################################################################
# DISCRETIZATION PARAMETERS
####################################################################################################
variable h equal 2.01*${l0} # SPH smoothing kernel radius
variable vol_one equal ${l0}^2 # volume of one particle -- assuming unit thickness
variable skin equal ${h} # Verlet list range
neighbor ${skin} bin
set group all volume ${vol_one}
set group all smd_mass_density ${rho}
set group all diameter ${h} # set SPH kernel radius

####################################################################################################
# DEFINE VELOCITY BOUNDARY CONDITIONS
####################################################################################################
variable vel0 equal 0.005 # pull velocity
region top block EDGE EDGE 9.0 EDGE EDGE EDGE units box
region bot block EDGE EDGE EDGE -9.1 EDGE EDGE units box
group top region top
group bot region bot
variable vel_up equal ${vel0}*(1.0-exp(-0.01*time))
variable vel_down equal -v_vel_up
fix veltop_fix top smd/setvelocity 0 v_vel_up 0
fix velbot_fix bot smd/setvelocity 0 v_vel_down 0
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####################################################################################################
# INTERACTION PHYSICS / MATERIAL MODEL
####################################################################################################
pair_style smd/tlsph
pair_coeff 1 1 *COMMON ${rho} ${E} ${nu} ${q1} ${q2} ${hg} ${cp} &

*STRENGTH_LINEAR &

*EOS_LINEAR &

*END

####################################################################################################
# TIME INTEGRATION
####################################################################################################
fix dtfix tlsph smd/adjust_dt 0.1 # dynamically adjust time increment every step
fix integration_fix tlsph smd/integrate_tlsph

####################################################################################################
# SPECIFY TRAJECTORY OUTPUT
####################################################################################################
compute S all smd/tlsph_stress # Cauchy stress tensor
compute E all smd/tlsph_strain # Green-Lagrange strain tensor
compute nn all smd/tlsph_num_neighs # number of neighbors for each particle
dump dump_id all custom 10 dump.LAMMPS id type x y z vx vy vz &

c_S[1] c_S[2] c_S[4] c_nn &
c_E[1] c_E[2] c_E[4] &
vx vy vz

dump_modify dump_id first yes

####################################################################################################
# STATUS OUTPUT
####################################################################################################
variable stress equal 0.5*(f_velbot_fix[2]-f_veltop_fix[2])/20 # stress = force / initial width
variable length equal xcm(top,y)-xcm(bot,y)
variable strain equal (v_length-${length})/${length} # engineering strain
fix stress_curve all print 10 "${strain} ${stress}" file stress_strain.dat screen no

thermo 100
thermo_style custom step dt f_dtfix v_strain

####################################################################################################
# RUN SIMULATION
####################################################################################################
run 2500
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From within the examples/USER/smd/rubber_strip_pull-directory, the simulation should be ex-
ecuted with the following shell command:

shell $> PATH-TO-LAMMPS-EXECUTABLES/lmp_serial < rubber_strip_pull.lmp

Figure (5.1) shows the final state of the simulation at an achieved engineering strain of ≈ 0.15. The
visualisation is obtained using the program OVITO [26], which is recommended due to its ease of use
and the speed at which large visualisations of simulations can be rendered. A check for the accuracy
of the simulation is reported in Figure (5.2), which displays the observed stress-strain relationship.
Note that the effective Young’s modulus under 2d plane-strain conditions is given by

E2d = E

1−ν2 ≈ 1.1GPa.

This value is indeed well reproduced by the slope of the stress-strain relation, at least for small strains.
For larger strains, deviations are expected because the engineering stress output by the simulation
becomes invalid.
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Figure 5.1: Rubber strip pull simulation. The colour coding shows the final state of the y y-stress
distribution (units: GPa).

Figure 5.2: Rubber strip pull simulation. The graph shows the simulation data (symbols) and an
analytic stress-strain relation.
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5.2 Tensile loading of an aluminum strip

. This example illustrates modelling of real materials, in this case aluminum, with a complicated
material model including failure.
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5.3 Fluid-Structure interaction

. This example illustrates how a fluid and deformable solids can be mutually coupled.

Figure 5.3: Fluid-Structure interaction snapshot 1

Figure 5.4: Fluid-Structure interaction snapshot 2
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5.4 Funnel flow

.

Figure 5.5: Gravity-driven fluid flow in a complex geometry.
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6

Creating particles

6.1 The USER-SMD data structure

It is mandatory to use the atom_vec smd command for SPH particles, which allocates memory for
the basic data which are associated with an SPH particle. These data are:

variable description value upon initial-
isation

int tag atom id 1 ... N
int type atom type 1 ... ntypes
int mol re-use of molecule to group collec-

tions of particles,
1

float x[3] particle coordinates position
float x0[3] reference particle coordinates same as x
float v[3] velocity used for Verlet time integra-

tion algorithm, correct only at half-
time-steps

zero vector

float vest[3] extrapolated velocity at full time-
steps

zero vector

float vfrac particle volume 1.0
float rmass particle mass 1.0
float radius SPH kernel radius 1.0
float contact_radius contact radius 1.0
float e internal energy 0.0
float tlsph_fold[9] deformation gradient of a particle in

the reference configuration
unit matrix

float tlsph_stress[6] unrotated Cauchy stress zero matrix
float eff_plastic_strain effective plastic strain 0.0
float eff_plastic_strain_rate effective plastic strain rate 0.0
float damage damage status of a particle 0.0

6.2 Creating geometries and reading USER-SMD data files

Two different methods exist for creating SPH particles. From within the LAMMPS command file, simple
geometries can be defined using create_atoms command in combination with lattice, region
commands.

Alternatively, arbitrarily complex geometries may be read from disk via the read_data command.
The format of a single line in the Atoms section, which defines the initial properties for an SPH parti-
cle, is as follows:

22



tag type mol vfrac rmass radius contact_radius x y z x0 y0 z0

6.3 Initialising particle properties from the LAMMPS command file

Particle properties can be initialised using the LAMMPS set command. The general syntax for the set
is:

set style ID keyword values ...
-------------------------------
style = atom or type or mol or group or region
ID = atom ID range or type range or mol ID range or group ID or region ID

For a complete description of the set command, see the LAMMPS documentation. Here, only the
keywords specific to the USER-SMD package are detailed. Note that the setup of a SPH simulation
requires the proper setting of the variables mass, volume, mass density, kernel radius, contact ra-
dius, and internal energy. If a LAMMPS data file is read, the variables volume, mass, kernel radius, and
contact radius are taken from that file.

6.3.1 Particle volume

The volume of a particle is set by:

set style ID volume v

Note that the sum of all particles’ volumes should equal the volume of the body which is to be simu-
lated. This can be checked using the output of compute smd/vol. Also note that the quantities mass,
volume, and mass density should be set mutually consistent.

6.3.2 Particle mass

The mass of a particle can be initialised directly:

set style ID mass m

Here, m is the particle’s mass. Assuming that the particle’s volume V has already been correctly set,
the mass can also be initialized by specifying a mass density:

set style ID smd/mass_density rho

This command computes the particle mass using m = ρ×V , where ρ is the specified mass density.
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6.3.3 Particle radius

There are two different radii values associated with each particle. The diameter equals the SPH ker-
nel range. The contact_radius is the radius used for computing contact forces which prevent inde-
pendent bodies from penetrating. Typically, the contact radius corresponds to one half of the particle
spacing, whereas the diameter is approximately 3 times the particle spacing. These quantities are
set using:

set style ID smd/contact_radius value
set style ID diameter value

Note that the argument of the set diameter command is the radius of the SPH smoothing kernel,
and not the diameter as one might be tempted to think.

6.3.4 Particle internal energy

The internal energy of a particle is set by:

set style ID internal_energy value
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7

SPH pair styles

Two different SPH pair styles are implemented in USER-SMD. The pair style smd/tlsph utilises a total
Lagrangian formulation which relates the deformation to particle displacements relative to a fixed
reference configuration. The pair style smd/ulsph is an updated Lagrangian formulation which does
away with the reference configuration and computes all deformations from time integration of the ve-
locities. The total Lagrangian formulation is more apt to the simulation of solid bodies due to better
accuracy, while the updated Lagrangian formulation is better suited to fluid flow problems as arbitrar-
ily large deformations are more easily described. Both pair styles are activated with the usual LAMMPS
commands pair_style and pair_coeff, however, due to the large number of possible parameters,
the concept of keyword cards, similar to the input decks of established Finite Element solver packages
is used.

7.1 The total Lagrangian pair style

This pair style is invoked with the following command:

pair_style smd/tlsph
pair_coeff <i> <j> *COMMON <rho0> <E> <nu> <Q1> <Q2> <hg> <Cp> &

*END

Here, i and j denote the LAMMPS particle types for which this pair style is defined. Note that i and j
must be equal, i.e., no smd/tlsph cross interactions between different particle types are allowed.. In
contrast to the usual LAMMPS pair coeff definitions, which are given solely a number of floats and
integers, the smd/tlsph pair coeff definition is organised using keywords. These keywords mark
the beginning of different sets of parameters for particle properties, material constitutive models, and
damage models. The pair coeff line must be terminated with the *END keyword. The use the line
continuation operator & is recommended. A typical invocation of the smd/tlsph for a solid body
would consist of an equation of state for computing the pressure (the diagonal components of the
stress tensor), and a material model to compute shear stresses (the off-diagonal components of the
stress tensor). Damage and failure models can also be added.
The *COMMON keyword is mandatory.

*COMMON <rho0> <E> <nu> <Q1> <Q2> <hg> <Cp>

This keyword must be followed by 7 numbers:
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parameter meaning recommended value
rho0 reference density ρ0 initial mass density
E reference Young’s modulus E initial Young’s modulus
nu reference Poisson ratio ν initial Poisson ratio
Q1 linear artificial viscosity coefficient Q1 0.05 to 1.0
Q2 not used
hg hourglass control coefficient γ 1 to 20
Cp specific heat capacity Cp , units: energy /

(mass * temperature)
must be > 0

From these parameters, some useful quantities are pre-computed, which are accessed by the vari-
ous equations of state and material models:

parameter description
bulk modulus K = E

3(1−2ν)
Lamé parameter λ λ= Eν

(1+ν)(1−2ν)
shear modulus G G = E

2(1+ν)

p-wave speed modulus M M = E(1−ν)
(1+ν)(1−2ν)

7.2 The updated Lagrangian pair style

This pair style is invoked with the following command:

pair_style smd/ulsph <*DENSITY_SUMMATION or *DENSITY_CONTINUITY> &
<*VELOCITY_GRADIENT or *NO_VELOCITY_GRADIENT> &
<*GRADIENT_CORRECTION or *NO_GRADIENT_CORRECTION>

pair_coeff <i> <j> *COMMON <rho0> <c0> <Q1> <Cp> <Hg> &

*END

Following smd_ulsph, three keywords are expected:

keyword description

*DENSITY_SUMMATION Recompute the mass density every timestep from scratch.

*DENSITY_CONTINUITY Time-integrate the mass density using the rate-of deformation
tensor.

*VELOCITY_GRADIENT Enable computation of the velocity gradient. This is needed
for *DENSITY_CONTINUITY, viscosity constitutive models, and
strength constitutive models.

*NO_VELOCITY_GRADIENT Save computation time by not computing the velocity gradient.
This is only useful for pure fluid simulations.

*GRADIENT_CORRECTION Compute first-order corrected derivatives. This makes the SPH
scheme more accurate but also susceptible to numerical insta-
bilities.

*NO_GRADIENT_CORRECTION Do not compute first-order corrected derivatives

i and j denote the LAMMPS particle types for which this pair style is defined. Note that i and j can be
different, i.e., smd/ulsph cross interactions between different particle types are allowed. In contrast
to the usual LAMMPS pair coeff definitions, which are given solely a number of floats and integers,
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the smd/ulsph pair coeff definition is organised using keywords. These keywords mark the begin-
ning of different sets of parameters for particle properties, material constitutive models, and damage
models. The pair coeff line must be terminated with the *END keyword. The use the line contin-
uation operator & is recommended. A typical invocation of the smd/ulsph for a solid body would
consist of the *COMMON keyword and an equation of state for computing the pressure (the diagonal
components of the stress tensor).
The *COMMON keyword is mandatory.

*COMMON <rho0> <c0> <Q1> <Cp> <Hg>

This keyword must be followed by 5 numbers:

parameter meaning recommended value
rho0 reference density ρ0 initial mass density
c0 reference speed of sound c0
Q1 linear artificial viscosity coefficient Q1 0.05 to 1.0
Cp specific heat capacity Cp , units: energy /

(mass * temperature)
must be > 0

Hg hourglass control coefficient 0

From these parameters, some useful quantities are pre-computed, which are accessed by the vari-
ous equations of state and material models:

parameter description
bulk modulus K = c2

0 ρ0

If a cross interaction between different particle types is required, i.e., between a highly viscous fluid
and a low viscosity fluid, the *CROSS keyword can be specified, but only after the i – i and j – j
interactions have been defined as shown in the example below:

pair_style smd/ulsph *DENSITY_CONTINUITY *VELOCITY_GRADIENT *GRADIENT_CORRECTION
pair_coeff 1 1 *COMMON <rho0> <c0> <Q1> <Cp> <Hg>&

*EOS_LINEAR &

*END
pair_coeff 2 2 *COMMON <rho0> <c0> <Q1> <Cp> <Hg> &

*EOS_LINEAR &

*VISCOSITY_NEWTON <mu> &

*END
pair_coeff 1 2 *CROSS

Note: the kernel gradient correction can lead to severe instabilities if the neighborhood of a par-
ticle is ill defined (too few neighbors or coplanar / colinear arrangements). The reason for this is
that the shape matrix needs to be inverted, which becomes impossible if it is rank deficient. This
problem is minimized due to the use of a stable SVD algorithm for the inversion. Nevertheless, if
your updated Lagrangian simulation crashes, try using *NO_GRADIENT_CORRECTION.
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8

Contact pair styles

USER-SMD uses contact forces to prevent different physical entities, such as individual solid bodies or
a fluid phase, from penetrating each other.

8.1 Hertzian particle contact force

This pair style is invoked with the following command:

pair_style smd/hertz scale_factor
pair_coeff <i> <j> contact_stiffness

Here, i and j denote the LAMMPS particle types for which this pair style is defined. Note that this
contact force can be defined both between different particle types and for the same particle type. The
latter is useful to model self-contact, e.g., when a flexible part bends and starts to interact with itself.
The Hertzian potential between two particles with contact radii Ri and R j and mutual distance r is
defined as follows:

rcut = Ri +R j (8.1)

δ = rcut − r (8.2)

rg eom = Ri R j

rcut
(8.3)

fi j = E
√
δrg eom ∀r < rcut (8.4)

These expressions are derived from the standard form of the Hertzian overlap potential between two
elastic spheres with elastic modulus E . This elastic modulus is set via the argument contact_stiffness,
which has units of pressure. A good choice for the contact stiffness is approximately one tenth to one
half of the characteristic stiffness of the interacting particle types, i.e., the Young’s modulus for a solid
body or the bulk modulus for a liquid. Much larger values of the contact stiffness lead to instabilities
with the standard magnitude of the CFL-stable time increment as computed by fix smd/adjust_dt
and much smaller values allow for penetration. Note that the radii for this potential are derived from
the contact radii, scaled with the argument scale_factor. It is recommended to set the scale fac-
tor to 1.5 if the contact radii are defined as one half of the initial distance between particles. This
approach leads to a much smoother effective interaction surface, compared to scale_factor=1.0.

Note that in the case of self-contact, i.e., particle type i equals particle type j, an additional in-
teraction check is performed: only particles which are separated by more than rcut in the reference
configuration are allowed to interact via the Hertzian potential. This check ensures that self contact
forces may only appear between particles which cannot interact otherwise, e.g., via SPH.
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8.2 Hertzian wall contact force for triangulated geometries

This is work in progress. See the LAMMPS Documentation pair_style smd/tri_surface for the
meantime.
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9

Material models

Material models for in USER-SMD are decomposed into isotropic and deviatoric parts, corresponding
to volumetric and shear deformations. The relationship between the scalar quantities volume change
µ = ρ/ρ0 − 1 and pressure p is given by an equation of state, while the relation between a tensorial
shear deformation εd and the stress deviator tensor σd is given by a material strength model. The
decomposition is additive, i.e.,

σ = pI +σd ,

where I is the diagonal unit tensor.

9.1 Equation of state models

9.1.1 *EOS_LINEAR

The simplest EOS is activated by the keyword

*EOS_LINEAR

and computes pressure according to

µ = ρ

ρ0
−1

p = Kµ

This EOS is implemented both for pair_style smd/ulsph and pair_style smd/tlsph.

9.1.2 *EOS_SHOCK

This is a simple Hugoniot shock EOS. It is activated by the keyword

*EOS_SHOCK <c0> <S> <Gamma>

and computes pressure according to

µ = ρ

ρ0
−1

pH = ρ0 c2
0 µ(1+µ)

(1.0− (S −1.0)∗µ)2

p = pH +ρ∗Γ∗ (e −e0)
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where ρ is the mass density and e is the internal energy per unit mass. The subscript 0 refers to these
values at the beginning of the simulation. This keyword must be followed by 3 numbers:

parameter meaning
c0 reference speed of sound
S Hugoniot parameter S, slope of us vs. up line
Gamma Grueneisen parameter Γ

This EOS is implemented for pair_style smd/tlsph

9.1.3 *EOS_POLYNOMIAL

This a general polynomial expression for an EOS. It is activated by the keyword

*EOS_POLYNOMIAL <C0> <C1> <C2> <C3> <C4> <C5> <C6>

Pressure is computed according to

µ = ρ

ρ0
−1

p = C0 +C1µ+C2µ
2 +C3µ

3 + (C4 +C5µ+C6µ
2)e

where ρ is the mass density and e is the internal energy per unit mass. This keyword must be followed
by 7 numbers:

parameter meaning
C0 polynomial coefficient C0

C1 polynomial coefficient C1

C2 polynomial coefficient C2

C3 polynomial coefficient C3

C4 polynomial coefficient C4

C5 polynomial coefficient C5

C6 polynomial coefficient C6

This EOS is implemented for pair_style smd/tlsph

9.1.4 *EOS_TAIT

This a general non-linear EOS which neglects thermal effects. It is activated by the keyword

*EOS_TAIT <n>

Pressure is computed according to

p = K

[(
ρ

ρ0

)n

−1

]
where ρ is the mass density and K is the bulk modulus, which is computed from the values passed
with the *COMMON keyword. This keyword must be followed by 1 number:

parameter meaning
n Tait exponent n

Note that a typical value is n = 7 for hydraulic simulations of water.

This EOS is implemented for pair_style smd/ulsph
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9.2 Material strength models

Material strength models are only defined for the smd/tlsph pair style.

9.2.1 *STRENGTH_LINEAR

The strength model implements the deviatoric stress part of linear, i.e., Hookean elasticity. It is acti-
vated by the following keyword:

*STRENGTH_LINEAR

The stress deviator is computed according to

σd = 2Gεd ,

where G is the shear modulus, which is computed from the parameters provided with the *COMMON
keyword.

This EOS is implemented both for pair_style smd/ulsph and pair_style smd/tlsph.

9.2.2 *STRENGTH_LINEAR_PLASTIC

The strength model implements the deviatoric stress part of linear elastic / ideal plastic material be-
haviour. It is activated by the following keyword:

*STRENGTH_LINEAR_PLASTIC <yield_stress0> <hardening parameter>

This is a history-dependent strength model. At each time-step n, an elastic trial update to the stress
deviator is performed>,

σtr i al
d =σn

d +2Gdd ,

where G is the shear modulus, and dd is the deviatoric part of the strain rate tensor. The second
invariant J2 of the trial stress deviator is then compared to the current plastic yield stress, which is a
linear function of the hardening parameter H and the equivalent plastic strain εeqv.

pl ast i c .

σyi eld =σ0
yi eld +H ε

eqv.
pl asti c

If J2 is below the yield stress, the elastic update is accepted. Otherwise, a limiting stress deviator with
J2 = σyi eld is obtained by scaling the trial stress deviator using the radial return algorithm [27]. The
increase in plastic strain, i.e., the amplitude by which the trial stress deviator has to be scaled back
such that J2 = σyi eld is added to the effective_plastic_strain variable, which can be accessed
via the compute smd/plastic_strain command.

This keyword must be followed by 2 numbers:

parameter meaning
yield_stress0 plastic yield stress σ0

yi eld

hardening parameter hardening parameter H

This strength model is implemented both for pair_style smd/ulsph and pair_style smd/tlsph.
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9.2.3 *STRENGTH_JOHNSON_COOK

This is a complex strength model developed for ductile metals. It is activated by the following key-
word:

*STRENGTH_JOHNSON_COOK <A> <B> <a> <C> <epdot0> <T0> <Tmelt> <m>

This strength model performs linear trial updates of the shear stresses using the shear modulus G .
The shear stresses are subsequently limited with a complex yield criterion which depends on the
equivalent plastic strain εp , the equivalent plastic strain rate ε̇p and temperature.

σyi eld =
[

A+B εa
p

] [
1+C ln

(
ε̇p

ε̇p,0

)] [
1−T m

H

]
TH is the homologeous temperature defined using current temperature T , reference temperature T0

and melting temperature Tmel t as:

TH = T −T0

Tmel t −T0

This keyword must be followed by 7 numbers:

parameter meaning
A initial yield stress A
B prop. factor for plastic strain dependence B
a exponent for plastic strain dependence a
C prop. factor for plastic strain rate dependence C
epdot0 reference plastic strain rate ε̇p,0

T0 reference temperature T0

Tmelt melt temperature Tmel t

m exponent m for temperature dependence

This strength model is implemented for pair_style smd/tlsph
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9.3 Damage and failure models

Damage and failure models are only defined for the smd/tlsph pair style. Classical continuum me-
chanics failure models work at an integration point, i.e., at a particle and typically degrade the stress
that this integration point can bear according to some rule. An alternative way of introducing damage
and failure, which is in much better agreement with the meshless spirit of SPH, is to degrade the in-
teraction between specific particle pairs only according to some rule. This approach has been used as
the visibility criterion before in other meshless methods such as the Element-Free Galerkin method
[28] but is also extensively persued in meshless peridynamic implementations [29].
SMOOTH MACH DYNAMICS only features degradation of pairwise interactions, however, the degrada-
tion may be initiated using a classical damage/failure model.

9.3.1 *FAILURE_MAX_PLASTIC_STRAIN

This is a simple failure model based on equivalent plastic strain. It is activated by the following key-
word:

*FAILURE_MAX_PLASTIC_STRAIN value

If the equivalent plastic strain of a particle exceeds the threshold value, its damage variable D is
immediately set to unity. Degradation of the material is achieved by considering pairs < i , j > of
particles. As soon as an interacting particle pair has a geometric mean damage,

D̄ =
√

Di D j ,

of unity, a one-dimensional pairwise damage onset strain,

εi j ,0 = r − r0

r0
,

is defined and stored once. Here, r and r0 are the current and initial distances of this particle pair. A
pairwise damage state di j is subsequently evaluated from the current pairwise strain εi j and its onset
damage strain:

di j =
{ εi j−εi j ,0

2 εi j ,0
if εi j > εi j ,0

0 else

All pairwise interactions are scaled with 1−di j to effect damage. If the pairwise damage state reaches
unity, the pairwise interaction is permanently deleted, similar to the visibility criterion mentioned
above. Due to the requirement that εi j must be larger than εi j ,0 to effect damage, failure can only re-
sult under tension or shear, but not under compression. The per-integration point damage variable
can be accessed using the compute smd/damage command.

Note: this failure model can lead to severe instabilities if used with Total-Lagrangian SPH under
compression.

9.3.2 *FAILURE_MAX_PAIRWISE_STRAIN

This is a simple failure model based on local strain. It is activated by the following keyword:

*FAILURE_MAX_PAIRWISE_STRAIN value
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Degradation of the material is achieved by considering pairs< i , j >of particles. If the one-dimensional
pairwise strain,

εi j = r − r0

r0
,

where r and r0 are the current and initial distances of this particle pair, exceeds the maximum sup-
plied value value, a pairwise damage state di j is evaluated:

di j =
{ εi j−εmax

1D
2 εmax

1D
if εi j > εmax

1D

0 else

All pairwise interactions are scaled with 1−di j to effect damage. If the pairwise damage state reaches
unity, the pairwise interaction is permanently deleted, similar to the visibility criterion mentioned
above. Due to the requirement that εi j must be larger than εmax

1D to effect damage, failure can only
result under tension or shear, but not under compression. The damage criterion is reversible as long
as the bond is not permanently failed.

Note: this failure model is numerically far more stable than the plastic strain based failure cri-
terion from above.
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10

Boundary conditions

This is work in progress. See the documentation of the indvidual fixes mentioned below for some
info.

10.1 Constraints imposed directly on the particles

The most straighforward way is to impose Dirichlet boundary conditions directly at the particles

• fix setforce for forces

• fix setvel for velocities

10.2 Rigid walls from surface tesselation geometries

SMOOTH MACH DYNAMICS supports loading triangulated surfaces from .STL format files. These sur-
faces can act as a rigid wall to constrain teh movement of SPH particles. See:

• fix smd/wall_surface for loading a surface

• fix smd/move_tri_surf for moving a surface during the course of a simulation.

Also look at the funnel_flow example. The current coordinates of the triangulated surfaces
can be saved to a trajectory file using the compute smd/triangle_vertices command and the
dump custom command. The so produced dump file can be converted into VTK file format using
the dump2vtk_tris program available int the tools directory.
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11

Time integration

11.1 Time integration for the Total-Lagrangian pair style

SPH particles for which the Total-Lagrangian pair style is defined should be time integrated with the
fix smd/integrate_tlsph command. This fix performs time the usual Velocity-Verlet integration
of position and velocity as well as Euler integration for the internal energy and mass density. Addi-
tionally, some logic is implemented to define and updated the reference configuration if needed. The
fix is invoked with:

fix ID group-ID smd/integrate_tlsph keyword values

• ID, group-ID are documented in fix command

• smd/integrate_tlsph = style name of this fix command

• zero or more keyword/value pairs may be appended:

– keyword limit_velocity value: reduce velocity of any particle if it exceeds value. This
destroys conservation of total energy but can help when dealing with instabilities.

11.2 Time integration for the updated Lagrangian pair style

SPH particles for which the updated Lagrangian pair style is defined should be time integrated with
the fix smd/integrate_ulsph command. This fix performs time the usual Velocity-Verlet integra-
tion of position and velocity as well as Euler integration for the internal energy and mass density. The
fix is invoked with:

fix ID group-ID smd/integrate_ulsph keyword values

• ID, group-ID are documented in fix command

• smd/integrate_ulsph = style name of this fix command

• zero or more keyword/value pairs may be appended:

– keyword limit_velocity value: reduce velocity of any particle if it exceeds value. This
destroys conservation of total energy but can help when dealing with instabilities.

– keyword adjust_radius factor min_nn max_nn: determine the SPH smoothing ker-
nel radius h dynamically such that a number of neighbors between min_nn and max_nn is
obtained.
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11.3 Stable timestep

For any explicit time integration scheme, the time incrementδt must satisfy the CFL-criterion (Courant,
Levy, and Friedrichs, see),

δt < h

c0
, (11.1)

where h is a characteristic distance between integration points and c0 is the speed at which infor-
mation propagates. For a liquid this speed depends on the bulk modulus K and the mass density
ρ, c0 = √

K /ρ. In a solid body, however, the additional shear stiffness G increases the speed to
c0 = √

(K +4G/3)/ρ. It is only possible for linear equations of state or constitutive models to pre-
compute the speed of information propagation. The fix smd/adjust_dt enables the computa-
tion of the stable time increment for each particle, considering the current effective bulk and shear
moduli K and G , which may change over the course of a simulation if a non-linear material model is
used. The resulting time increment is the smallest computed time increment of all particles for which
the fix is defined. This fix computes stable time increments both for smd/ulsph and smd/tlsph pair
styles.

This fix also inquires stable time increments from the smd/hertz and smd/tri_surface pair styles.

fix ID group-ID smd/adjust_dt factor

• ID, group-ID are documented in fix command

• smd/adjust_dt = style name of this fix command

• keyword factor: scalar prefactor for the CFL criterion, δt = factor×h/c0

h is taken as the SPH smoothing kernel radius. Typically, factor=0.1.

Fix Output:

• This fix returns a scalar which keeps track of the total time, i.e., the sum of all time increments.
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12

Access to particle quantities

To access particle quantities, e.g., stress and strain tensors, or the mass density, different mecha-
nisms are available, depending on the actual quantity. Some scalar quantities are accessed via the
variable command, others via a compute command. In the following, only the quantities specific
to the USER-SMD package are discussed.

12.1 Particle volume and mass

Particle volumes and masses are accessed via the variable command:

variable name1 atom volume
variable name2 atom mass

Here, name1 is a vector of length (total number of particles) and contains the particles’ volumes.
name2 similarly holds the particles’ masses.

12.1.1 Mass density

Mass density is accessed via a compute command:

compute name group smd/rho

This command creates a vector of length (total number of particles), named name which holds the
particles’ mass density values. Note that these values are only meaningful if the smd/ulsph pair style
is used, as only this pair style performs time integration of the mass density.

12.1.2 Contact radius

Contact radii are accessed via a compute command:

compute name group smd/contact_radius

This command creates a vector of length (total number of particles), named name which holds the
particles’ contact radius values.
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12.1.3 Deformed particle shape

The deformation of particles interacting with the Total-Lagrangian SPH scheme can be accessed via
a compute command:

compute name group smd/tlsph_shape

This command creates an array of length (total number of particles) * 7, named name which holds the
particles’ stretch axes and rotation. The first three values for each particle correspond to contact_radius,
scaled with the εxx , εy y , εzz strains. These values define the half-axes of an ellipsoid that is stretched
according to the strain tensor of the particle. The next four entries give the rotation of the ellipsoid as
a quaternion (component order: Q, X, Y, Z).

12.1.4 SPH kernel diameter

The SPH kernel diameter cannot be directly accessed via a variable or compute command. How-
ever, the dump custom command can be used to output the quantity radius, which is one half of the
SPH kernel diameter.

12.1.5 Equivalent plastic strain

Equivalent plastic strain is accessed via a compute command:

compute name group smd/plastic_strain

This command creates a vector of length (total number of particles), named name which holds the
particles’ equivalent plastic strain. Note that these values are only meaningful if the smd/tlsph pair
style is used, as only this pair style computes the equivalent plastic strain.

12.1.6 Equivalent plastic strain rate

Equivalent plastic strain rate is accessed via a compute command:

compute name group smd/plastic_strain_rate

This command creates a vector of length (total number of particles), named name which holds the
particles’ equivalent plastic strain rate. Note that these values are only meaningful if the smd/tlsph
pair style is used, as only this pair style computes the equivalent plastic strain rate.

12.1.7 Internal energy

The thermodynamic internal energy (the sum of work and heat energies) is accessed via a compute
command:

compute name group smd/internal_energy

This command creates a vector of length (total number of particles), named name which holds the
particles’ internal energy.
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12.1.8 Damage

The scalar damage variable, which is used for some but but not all material models to degrade stiff-
ness and/or strength, is accessed via a compute command:

compute name group smd/damage

This command creates a vector of length (total number of particles), named name which holds the
particles’ damage variable.

12.1.9 Number of Particles within the SPH kernel range

The number of particles interacting with a given particle, i.e., those particles which are spatially closer
to the given particle than the SPH kernel radius, is accessed via a compute command:

compute name group smd/tlsph_num_neighs
compute name group smd/ulsph_num_neighs

This command creates a vector of length (total number of particles), named name which holds the
particles’ number of interacting neighbours. Note that smd/tlsph_num_neighs computes this quan-
tity for the smd/tlsphpair style, while smd/ulsph_num_neighsneeds to be used with the smd/ulsph
pair style.

12.1.10 Hourglass error

The hourglass error, defined as the SPH average of the deviation between the linear displacement
described by the deformation gradient and the actual displacement for a particle, is accessed via a
compute command:

compute name group smd/hourglass_error

This command creates a vector of length (total number of particles), named name which holds the
particles’ hourglass error variable. Note that these values are only meaningful if the smd/tlsph pair
style is used, as only this pair style computes the hourglass error.

12.1.11 Stress tensor

The Cauchy stress tensor for SPH particles is accessed via a compute command:

compute name group smd/tlsph_stress
compute name group smd/ulsph_stress

This command creates an array of length (total number of particles) * 7, named name which holds the
particles’ Cauchy stress components and the equivalent von Mises stres. Note thatsmd/tlsph_stress
computes this quantity for the smd/tlsph pair style, while smd/ulsph_stress needs to be used with
the smd/ulsph pair style. The first six values for each particle correspond to the σxx , σy y , σzz , σx y ,
σxz , and σy z components of the symmetric stress tensor, while the 7th component ist the von Mises
euqivalent stress, i.e., the second invariant of the stress tensor.
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12.1.12 Strain tensor

The Green-Lagrange strain tensor for SPH particles is accessed via a compute command:

compute name group smd/tlsph_strain

This command creates an array of length (total number of particles) * 6, named name which holds the
particles’ Green-Lagrange strain components.

ε= 1

2

(
F T

t Ft −I
)

,

whereFt is the deformation gradient tensor and I is the diagonal unit matrix. The six values for each
particle correspond to the εxx , εy y , εzz , εx y , εxz , and εy z components of the symmetric strain tensor.
Note that the total deformation gradient is used here, as defined in section 2.4. These values are
only meaningful is the smd/tlsph pair style is used, as only this pair style computes the deformation
gradient.

12.1.13 Strain rate tensor

The time derivative of the strain tensor for SPH particles is accessed via a compute command:

compute name group smd/tlsph_strain_rate
compute name group smd/ulsph_strain_rate

This command creates an array of length (total number of particles) * 6, named name which holds
the particles’ strain rate tensor components. The strain rate is computed as the symmetric part of the
velocity gradientL,

ε̇= 1

2

(
L+LT )

,

where

L= ∂v

∂x
=



∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy

∂x
∂vy

∂y
∂vy

∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z

 .

This quantity is computed both by the smd/tlsph and smd/ulsph pair styles. The six values for each
particle correspond to the ε̇xx , ˙εy y , ˙εzz , ˙εx y , ˙εxz , and ˙εy z components of the symmetric strain tensor.

42



Bibliography

[1] L. B. Lucy, A numerical approach to the testing of the fission hypothesis, The Astronomical Jour-
nal 82 (1977) 1013–1024. doi:10.1086/112164.

[2] R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics - Theory and application to
non-spherical stars, Monthly Notices of the Royal Astronomical Society 181 (1977) 375–389.

[3] V. Springel, Smoothed Particle Hydrodynamics in Astrophysics, Annual Review of Astronomy
and Astrophysics 48 (1) (2010) 391–430. doi:10.1146/annurev-astro-081309-130914.

[4] M. Gomez-Gesteira, B. D. Rogers, R. A. Dalrymple, A. J. C. Crespo, State-of-the-art of classical
SPH for free-surface flows, JHR 48 (extra) (2010) 6–27. doi:10.3826/jhr.2010.0012.

[5] L. D. Libersky, A. G. Petschek, Smooth particle hydrodynamics with strength of materials, in:
H. E. Trease, M. F. Fritts, W. P. Crowley (Eds.), Advances in the Free-Lagrange Method Includ-
ing Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, Vol.
395 of Lecture Notes in Physics, Berlin Springer Verlag, 1991, pp. 248–257. doi:10.1007/
3-540-54960-9_58.

[6] J. Swegle, D. Hicks, S. Attaway, Smoothed Particle Hydrodynamics Stability Analysis, Journal of
Computational Physics 116 (1) (1995) 123–134. doi:10.1006/jcph.1995.1010.

[7] C. T. Dyka, P. W. Randles, R. P. Ingle, Stress Points for Tension Instability in SPH, Int. J. Numer.
Meth. Eng. 40 (1997) 2325–2341.

[8] D. L. Hicks, J. W. Swegle, S. W. Attaway, Conservative smoothing stabilizes discrete-numerical
instabilities in SPH material dynamics computations, Applied Mathematics and Computation
85 (1997) 209–226. doi:http://dx.doi.org/10.1016/S0096-3003(96)00136-1.

[9] J. Monaghan, On the problem of penetration in particle methods, Journal of Computational
Physics 82 (1) (1989) 1–15. doi:16/0021-9991(89)90032-6.

[10] P. Randles, L. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and ap-
plications, Computer Methods in Applied Mechanics and Engineering 139 (1) (1996) 375–408.

[11] J. P. Gray, J. J. Monaghan, R. P. Swift, SPH elastic dynamics, Computer Methods in Applied
Mechanics and Engineering 190 (49-50) (2001) 6641–6662. doi:10.1016/S0045-7825(01)
00254-7.

[12] T. Belytschko, Y. Guo, W. Kam Liu, S. Ping Xiao, A unified stability analysis of meshless particle
methods, International Journal for Numerical Methods in Engineering 48 (9) (2000) 1359–1400.
doi:10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U.

[13] J. Bonet, S. Kulasegaram, Remarks on tension instability of Eulerian and Lagrangian corrected
smooth particle hydrodynamics (CSPH) methods, International Journal for Numerical Methods
in Engineering 52 (11) (2001) 1203–1220. doi:10.1002/nme.242.

43

http://dx.doi.org/10.1086/112164
http://dx.doi.org/10.1146/annurev-astro-081309-130914
http://dx.doi.org/10.3826/jhr.2010.0012
http://dx.doi.org/10.1007/3-540-54960-9_58
http://dx.doi.org/10.1007/3-540-54960-9_58
http://dx.doi.org/10.1006/jcph.1995.1010
http://dx.doi.org/http://dx.doi.org/10.1016/S0096-3003(96)00136-1
http://dx.doi.org/16/0021-9991(89)90032-6
http://dx.doi.org/10.1016/S0045-7825(01)00254-7
http://dx.doi.org/10.1016/S0045-7825(01)00254-7
http://dx.doi.org/10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
http://dx.doi.org/10.1002/nme.242


[14] J. Bonet, S. Kulasegaram, Alternative Total Lagrangian Formulations for Corrected Smooth Par-
ticle Hydrodynamics (CSPH) Methods in Large Strain Dynamic Problems, Revue EuropÃl’enne
des ÃL’lÃl’ments 11 (7-8) (2002) 893–912. doi:10.3166/reef.11.893-912.

[15] T. Rabczuk, T. Belytschko, S. Xiao, Stable particle methods based on Lagrangian kernels, Com-
puter Methods in Applied Mechanics and Engineering 193 (12âĂŞ14) (2004) 1035–1063. doi:
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