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1 Peridynamic theory of solids

The peridynamic theory of solid mechanics (S. Silling, 2000; S. Silling, Zim-
mermann, & Abeyarante, 2003; S. A. Silling, Epton, Weckner, Xu, & Askari,
2007) has been proposed as an alternative to the classical theory, and is of-
fered as a mathematically consistent technique for modeling solid bodies with
continuous and discontinuous displacements as well as a method that unifies
the mechanics of particles and continuum bodies through the utilization of
long-range forces.

The balance equation between rate of change of linear momentum and
applied force on a deformable body Ω develops the fundamental equation in
classical continuum mechanics is written in Eq. (1)

ρ (x) ü (x, t) = ∇ · σ + b (x, t) . (1)

where, x ∈ Ω, t is the time, ρ is the mass density, ü is the accelaration,
σ is the stress tensor and b is the body force. This differential equation is
not well defined at the discontinuities. The PD formulation of a continuum
introduces integral form of kinematic equation in order to mitigate this issue
by calculating the force density on each material point as
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Figure 1: Schematic of peridynamic body.

ρ (x) ü (x, t) =

∫
B
f (η, ξ) dV + b (x, t) . (2)

where, deformable body Ω is represented with respect to an arbitrary frame
of reference, f is the pairwise force applied on particle at x by a neighborhood
particle at x

′
and B is a spherical region in the neighborhood of x with radius

δ, ξ=x
′
-x and η=u

(
x

′
, t
)
−u (x, t) are relative position and displacement

vectors, respectively (Fig 1) . For a certain δ > 0, f (η, ξ) = 0 for all η when
‖ξ‖ > δ. This equation may be written more elaborately in terms of bond
between x and x

′
as

ρ (x) ü (x, t) =

∫
B

{
T [x, t]

〈
x

′ − x
〉
−T

[
x

′
, t
] 〈
x− x′

〉}
dVx′ + b (x, t) .

(3)
Equation. 3 is Newton,s equation of motion for continuum node x. The

left hand side of Eq. 3 is MassDensity × Acceleration and the right hand
side of Eq. 3 corresponds to force density. Equation. 3 can be written in
discretized form as (Parks, Lehoucq, Plimpton, & Silling, 2008)

ρiüi =

Mδ∑
j 6=i

{T [xi, t] 〈xj − xi〉 −T [xj, t] 〈xi − xj〉}∆Vxi + bi. (4)

Here, ‖xj − xi‖ ≤ δ. Mδ correspond to number of peridynamic nodes
within the horizon δ. The force vector state T [x, t] is interpreted in terms
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of mapping the bond between xi and xj to a force per volume which has
a cutoff range. Each particle experiences two types of forces: short range
forces and long range forces i.e. bond-forces. Short range forces are repulsive
in nature. The bond-force on each particle is generated from the bonds it
shares with the neighboring particles. Here, the T is an infinite dimensional
vector operator that maps the deformed image of the vector contained in
the angle brackets, 〈〉, into the force acting on x. T = tM is defined as a
force vector-state. t and M are the scalar force state and deformed state,
respectively. In PDLAMMPS the bond based peridynamics is implemented
as prototype microelastic brittle model (PMB). The scalar force state for
PMB is written as (Parks et al., 2008; S. Silling, 2000)

tPMB =
1

2

18K

πδ4
‖η + ξ‖ − ‖ξ‖

‖ξ‖
. (5)

For the state-based peridynamic linearly elastic (LPS), elastic-plastic
(EPS) and viscoelastic (VES) solids the scaler force state is written as
(Parks et al., 2008; S. A. Silling et al., 2007)

tElastic = −3Kθ

m
ωx+ αωed, (6)

tPlastic = −3Kθ

m
ωx+ αω

(
ed − edp

)
, (7)

tV iscoelastic = −3Kθ

m
ωx+ (α∞ + αi) e

d − αiωedb(i). (8)

In Eq. 6 ω〈ξ〉, x〈ξ〉 = ‖ξ‖ where ξ = x
′ − x. m, θ, e and ed are the

influence function, reference state, weighted volume, dilatation, extension
state and deviatoric extension state respectively . The bulk modulus is K
and the shear modulus (G) related term α = 15G

m
(S. A. Silling et al., 2007).

In the above equations edp is the plastic component of the extension state,
edb(i) is the back extension state. For viscoelasticity model α = α∞ + αi
and 0 < αi <

15µ
m

(Parks et al., 2008; Mitchell, 2011a, 2011b). The detail
about the peridynamic models implemented in PDLAMMPS can be found
in the PDLAMMPS-documentation (Parks et al., 2008) and EPS and VES
documentations (Rahman & Foster, 2013a, 2013b).
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2 Implementation of peridynamics in LAMMPS

As the discretized version of the governing equation in peridynamics (Eq.
4) is a Newton’s equation of motion, peridynamics was implemented in the
classical molecular dynamics package LAMMPS (Parks et al., 2008; Plimp-
ton, 1995). The peridynamics implementation in LAMMPS is known as
PDLAMMPS. The package PERI in the LAMMPS src directory contains
four peridynamic pair-styles: pmb, lps, eps and ves. PERI can be compiled
as follows

$ make yes−p e r i
$ make foo

Here, foo corresponds to the machine name you are building LAMMPS
for. For more information please look at the LAMMPS compilation instruc-
tions at http://lammps.sandia.gov/docSection start.html#start 2.

2.1 Linear peridynamic soild: LPS

The formulation for peri-lps (Eq.6) was applied in PDLAMMPS. The pair
style for lps is

p a i r s t y l e p e r i / l p s
p a i r c o e f f ∗ ∗ K G hor izon s00 Constant alpha

Here, K, G, Constant-s00 and Constant-α are the bulk modulus, shear
modulus and bond-breaking constants, respectively. 1 The unit for K and
G is Force

Area
. Constant-s00 and Constant-α are unit-less . The horizon δ is in

the unit of Length.

2.2 Peridynamic elastic-plastic soild: EPS

The formulation for peri-eps (Eq.7) was applied in PDLAMMPS. The pair
style for eps is (Rahman & Foster, 2013a)

p a i r s t y l e p e r i / eps
p a i r c o e f f ∗ ∗ K G hor izon s00 alpha Y i e l d S t r e s s

1The user must not get confused with the completely different parameters: Constant-α
and α = 15G

m .
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Here, K, G, Constant-s00 and Constant-α are the bulk modulus, shear
modulus and bond-breaking constants, respectively. YieldStress is the ma-
terial’s yield stress σY . The unit for K, G and σY is Force

Area
. Constant-s00 and

Constant-α are unit-less . The horizon δ is in the unit of Length.

2.3 Peridynamic visco-elastic soild: VES

The formulation for peri-ves (Eq.8) was applied in PDLAMMPS. The pair
style for ves is (Rahman & Foster, 2013b)

p a i r s t y l e p e r i / ves
p a i r c o e f f ∗ ∗ K G hor izon s00 alpha lambda i t a u i

Here, K, G, Constant-s00 and Constant-α are the bulk modulus, shear
modulus and bond-breaking constants, respectively. Constant-λi and Constant-
τi are the viscoelastic relaxation parameter and time constant, respectively.
The unit for K and G is Force

Area
. Constant-s00, Constant-α, Constant-λi and

Constant-τi are unit-less . The horizon δ is in the unit of Length.

2.4 Peridynamic prototype microelastic brittle solid:
PMB

The formulation for peri-pmb (Eq.5) was applied in PDLAMMPS. The pair
style for pmb is

p a i r s t y l e p e r i /pmb
p a i r c o e f f ∗ ∗ c hor i zon s00 alpha

Here, c = 18K
πδ4

, Constant-s00 and Constant-α are the spring constant and

bond-breaking constants, respectively. The unit for c is Energy
Length7

. Constant-s00
and Constant-α are unit-less . The horizon δ is in the unit of Length.

3 Consistent units in PDLAMMPS

In PDLAMMPS the units must be consistent with the available LAMMPS
units. Let, K, G, δ are the bulk-modulus, shear modulus and horizon, respec-
tively. f̃ and rIJ are the force density vector at a node and distance between
I th and J th peridynamic nodes, respectively. These later two parameters can
be obtained after running PDLAMMPS (e.g. LAMMPS dump file).
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For an example, in si and metal units the set of consists units are shown
in Table. 1. For other LAMMPS units the user must follow the required unit
consistency in LAMMPS. 2

Metal Si

K eV/Å
3

Pascals

G eV/Å
3

Pascals
δ Å Meters

f̃ eV/Å
4

Newtons/Cubic meters
rIJ Å Meters

Table 1: Difference between consistent units in PDLAMMPS

4 Additional features in PDLAMMPS

In PDLAMMPS there are three compute commands available. The command
compute damage/atom calculates the damage φ (x, t) at each peridy-
namic node (Parks et al., 2008). The peridynamic damage can be expressed
as

φ (x, t) = 1−
∫
H µ (t, η, ξ) dVx′∫

H dVx′
(9)

s0 (t, η, ξ) = s00 − αsmin (t, η, ξ) (10)

smin (t) = min
ξ
s (t, η, ξ) (11)

Here, µ (t, η, ξ) is a binary function.

µ (t, η, ξ) = 1 if s
′ (
t
′
, η, ξ

)
< min

(
s0
(
t
′
, η, ξ

)
, s0
(
t
′
, η

′
, ξ
))

for 0 ≤ t
′ ≤ t.

Otherwise, µ (t, η, ξ) = 0. And, ξ
′
=x

′′
-x

′
and η

′
=u
(
x

′′
, t
)
−u
(
x

′
, t
)
. The

Eq. 9 refers to the accumulation of damages at a node while each bond
stretch exceeds the critical bond stretch s0 (t, η, ξ). The material dependent
parameters Constant-s00 and Constant-α are used in Eq. 11. During the
simulation the values for φ (x, t) varies within the interval [0, 1]

2For detail information the user is referred to http://lammps.sandia.gov/doc/units.html.
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Another compute command is compute dilatation/atom. The dilata-
tion θ (x, t) is written as (S. A. Silling et al., 2007)

θ (x, t) =
3

m (x, t)

∫
B
ω〈ξ〉x〈ξ〉e〈ξ〉dVξ (12)

m (x, t) =

∫
B
ω〈ξ〉x〈ξ〉x〈ξ〉dVξ (13)

It is observed from Eq. 12 and 13 that θ (x, t) is unit-less and it is varies
within the interval [0,∞). This compute command is applicable to peri-lps,
peri-eps and peri-ves.

The third compute is compute plasticity/atom. This compute is ap-
plicable to only peri-eps. At each time-step compute plasticity/atom
calculates and stores the plasticity parameter λ for each peridynamic node.
λ refers to the plasticity consistency parameter. From Eq. 7 the deviatoric
component of the scalar force state is tdP lastic = αω

(
ed − edp

)
. In order to

obtain the constitutive model based on plasticity the f allowable deviatoric
force state tdP lastic satisfies the inequality ψ

(
tdP lastic

)
− ψ0 ≤ 0. Preferably,

ψ
(
tdP lastic

)
=

‖tdPlastic
2‖

2
. Here, ψ0 ≤ 0 is the yield point of the material. Based

on the plastic flow rule ėdp = λ∇dψ. ∇dψ is the constrained Frèchet deriva-
tive of ψ while the previously mentioned inequality is satisfied. For detail
derivations please look at the document provided by John Mitchell at Sandia
national lab (Mitchell, 2011a). λ is unit-less and varies within the interval
[0,∞). All three of these computes store the values in C++ one dimensional
arrays or vectors.
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