Additional documentation for the RE-squared ellipsoidal potential as implemented in LAMMPS

Mike Brown, Sandia National Labs, October 2007

Let the shape matrices $\mathbf{S}_{\mathbf{i}}=\operatorname{diag}\left(\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}\right)$ be given by the ellipsoid radii. Let the relative energy matrices $\mathbf{E}_{\mathbf{i}}=\operatorname{diag}\left(\epsilon_{\mathbf{i}}, \epsilon_{\mathbf{i} \mathbf{b}}, \epsilon_{\mathbf{i} \mathbf{c}}\right)$ be given by the relative well depths (dimensionless energy scales inversely proportional to the well-depths of the respective orthogonal configurations of the interacting molecules). Let $\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$ be the transformation matrices from the simulation box frame to the body frame and \mathbf{r} be the center to center vector between the particles. Let A_{12} be the Hamaker constant for the interaction given in LJ units by $A_{12}=4 \pi^{2} \epsilon_{\mathrm{LJ}}\left(\rho \sigma^{3}\right)^{2}$.

The RE-squared anisotropic interaction between pairs of ellipsoidal particles is given by

$$
\begin{gathered}
U=U_{A}+U_{R}, \\
U_{\alpha}=\frac{A_{12}}{m_{\alpha}}\left(\frac{\sigma}{h}\right)^{n_{\alpha}}\left(1+o_{\alpha} \eta \chi \frac{\sigma}{h}\right) \times \prod_{i} \frac{a_{i} b_{i} c_{i}}{\left(a_{i}+h / p_{\alpha}\right)\left(b_{i}+h / p_{\alpha}\right)\left(c_{i}+h / p_{\alpha}\right)}, \\
m_{A}=-36, n_{A}=0, o_{A}=3, p_{A}=2, \\
m_{R}=2025, n_{R}=6, o_{R}=45 / 56, p_{R}=60^{1 / 3}, \\
\chi=2 \hat{\mathbf{r}}^{T} \mathbf{B}^{-1} \hat{\mathbf{r}} \\
\hat{\mathbf{r}}=\mathbf{r} /|\mathbf{r}| \\
\mathbf{B}=\mathbf{A}_{1}^{\mathrm{T}} \mathbf{E}_{\mathbf{1}} \mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{2}}^{\mathrm{T}} \mathbf{E}_{\mathbf{2}} \mathbf{A}_{\mathbf{2}}
\end{gathered}
$$

$$
\begin{gathered}
\eta=\frac{\operatorname{det}\left[\mathbf{S}_{\mathbf{1}}\right] / \sigma_{\mathbf{1}}^{2}+\operatorname{det}\left[\mathbf{S}_{\mathbf{2}}\right] / \sigma_{\mathbf{2}}^{2}}{\left[\operatorname{det}[\mathbf{H}] /\left(\sigma_{\mathbf{1}}+\sigma_{\mathbf{2}}\right)\right]^{\mathbf{1} / \mathbf{2}}} \\
\sigma_{i}=\left(\hat{\mathbf{r}}^{T} \mathbf{A}_{\mathbf{i}}^{\mathbf{T}} \mathbf{S}_{\mathbf{i}}^{-\mathbf{2}} \mathbf{A}_{\mathbf{i}} \hat{\mathbf{r}}\right)^{-\mathbf{1} / \mathbf{2}} \\
\mathbf{H}=\frac{\mathbf{1}}{\sigma_{\mathbf{1}}} \mathbf{A}_{\mathbf{1}}^{\mathbf{T}} \mathbf{S}_{\mathbf{1}}^{\mathbf{2}} \mathbf{A}_{\mathbf{1}}+\frac{\mathbf{1}}{\sigma_{\mathbf{2}}} \mathbf{A}_{\mathbf{2}}^{\mathbf{T}} \mathbf{S}_{\mathbf{2}}^{\mathbf{2}} \mathbf{A}_{\mathbf{2}}
\end{gathered}
$$

Here, we use the distance of closest approach approximation given by the Perram reference, namely

$$
\begin{gathered}
h=|r|-\sigma_{12} \\
\sigma_{12}=\left[\frac{1}{2} \hat{\mathbf{r}}^{T} \mathbf{G}^{-\mathbf{1}} \hat{\mathbf{r}}\right]^{-\mathbf{1} / \mathbf{2}}
\end{gathered}
$$

and

$$
\mathrm{G}=\mathrm{A}_{1}^{\mathrm{T}} \mathrm{~S}_{1}^{2} \mathrm{~A}_{1}+\mathrm{A}_{2}^{\mathrm{T}} \mathrm{~S}_{2}^{2} \mathrm{~A}_{2}
$$

The RE-squared anisotropic interaction between a ellipsoidal particle and a Lennard-Jones sphere is defined as the $\lim _{a_{2}>0} U$ under the constraints that $a_{2}=b_{2}=c_{2}$ and $\frac{4}{3} \pi a_{2}^{3} \rho=1$:

$$
\begin{gathered}
U_{\mathrm{elj}}=U_{A_{\mathrm{elj}}}+U_{R_{\mathrm{elj}}} \\
U_{\alpha_{\mathrm{elj}}}=\left(\frac{3 \sigma^{3} c_{\alpha}^{3}}{4 \pi h_{\mathrm{elj}}^{3}}\right) \frac{A_{12_{\mathrm{elj}}}}{m_{\alpha}}\left(\frac{\sigma}{h_{\mathrm{elj}}}\right)^{n_{\alpha}}\left(1+o_{\alpha} \chi_{\mathrm{elj}} \frac{\sigma}{h_{\mathrm{elj}}}\right) \times \frac{a_{1} b_{1} c_{1}}{\left(a_{1}+h_{\mathrm{elj}} / p_{\alpha}\right)\left(b_{1}+h_{\mathrm{elj}} / p_{\alpha}\right)\left(c_{1}+h_{\mathrm{elj}} / p_{\alpha}\right)}, \\
A_{12_{\mathrm{elj}}}=4 \pi^{2} \epsilon_{\mathrm{LJ}}\left(\rho \sigma^{3}\right),
\end{gathered}
$$

with $h_{\text {elj }}$ and $\chi_{\text {elj }}$ calculated as above by replacing B with $B_{\text {elj }}$ and G with G_{elj} :

$$
\mathbf{B}_{\mathrm{elj}}=\mathbf{A}_{\mathbf{1}}^{\mathbf{T}} \mathbf{E}_{\mathbf{1}} \mathbf{A}_{\mathbf{1}}+\mathbf{I}
$$

$$
\mathbf{G}_{\mathrm{elj}}=\mathbf{A}_{1}^{\mathbf{T}} \mathbf{S}_{\mathbf{1}}^{2} \mathbf{A}_{\mathbf{1}} .
$$

The interaction between two LJ spheres is calculated as:

$$
U_{\mathrm{lj}}=4 \epsilon\left[\left(\frac{\sigma}{|\mathbf{r}|}\right)^{12}-\left(\frac{\sigma}{|\mathbf{r}|}\right)^{6}\right]
$$

The analytic derivatives are used for all force and torque calculation.

