
The implementation of Smooth Particle Hydrodynamics in

LAMMPS.

A guide to the SPH-USER package.

Georg C. Ganzenmüller∗ and Martin O. Steinhauser
Fraunhofer Ernst-Mach Institut für Hochgeschwindigkeitsdynamik

Freiburg, Germany

Paul Van Liedekerke
Faculty of Bio-Engineering, MEBIOS Division

Katholieke Universtiteit Leuven
Leuven, Belgium

July 17, 2011

∗georg.ganzenmueller@emi.fraunhofer.de

1

SPH-USER Documentation Contents 2

Contents

1. Introduction 3
1.1. Quick Start Guide

2. Getting Started 4
2.1. Building the SPH module within LAMMPS
2.2. Running SPH simulations with LAMMPS

3. SPH Theory 5
3.1. SPH approximation of the local density
3.2. SPH approximation of the Navier-Stokes equation of motion
3.3. SPH approximation of the Navier-Stokes continuity equation
3.4. SPH approximation of the Navier-Stokes energy equation
3.5. SPH artificial viscosity
3.6. SPH laminar flow viscosity

4. Implementation of SPH in LAMMPS 9
4.1. Data structure
4.2. Time stepping
4.3. Local density calculation
4.4. Equation of State
4.5. Heat conduction
4.6. Boundary conditions
4.7. Accessing SPH variables for initialisation and output

5. Validation tests 13
5.1. Heat conduction
5.2. Shock wave structure
5.3. Collapse of a water column
5.4. Shear cavity flow

SPH-USER Documentation Introduction 3

1. Introduction
This document describes the implementation of the Smooth Particle Hydrodynamics (SPH)
method within the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).

LAMMPS is a particle simulation code, developed and maintained at Sandia National Labora-
tories, USA. While is primarily aimed at Molecular Dynamics simulations of atomistic systems,
it provides a general, fully parallelized framework for particle simulations governed by Newton’s
equations of motion.

SPH is a continuum method, which does not require a predefined grid to evaluate the asso-
ciated partial differential field equations of continuum mechanics. Instead, SPH discretises the
mass distribution field into point masses which move with the material, according to Newtons
equations of motion. The positions of the point masses serve as integration nodes for the field
equations of continuum mechanics. The required variable fields are constructed on-the-fly using
interpolation kernels, which are centred at the point masses. Due to its particle nature, SPH is
directly compatible with the existing code architecture and data structures present in LAMMPS.

1.1. Quick Start Guide

For those who hate reading users’ guides, please try the following:

1. Download LAMMPS from http://lammps.sandia.gov and untar the source.

2. In the LAMMPS src/ directory do make yes-sph followed by make <your platform>

(for example, make serial).

3. In the LAMMPS examples/sph directory, run the example input script (for example,
lmp_serial < dambreak.lmp).

4. Visualise results using an appropriate software. We recommend Ovito [8] for this purpose.

SPH-USER Documentation Getting Started 4

2. Getting Started
We assume that you already have a working LAMMPS installation. For more on downloading and
building LAMMPS, see http://lammps.sandia.gov. This document only provides information
related to the SPH module within LAMMPS. For questions regarding the usage of LAMMPS,
please see the LAMMPS documentation.

2.1. Building the SPH module within LAMMPS

In the LAMMPS distribution, the SPH is distributed as an add-on module, which means that it
is not by default compiled with the rest of LAMMPS. To instruct LAMMPS to build the SPH
module, go to the LAMMPS source subdirectory (/src) and type

make yes-sph

followed by

make <your platform>

to compile LAMMPS on your particular platform.

2.2. Running SPH simulations with LAMMPS

See Sec. 5 for a few examples.

SPH-USER Documentation SPH Theory 5

3. SPH Theory
This section gives a concise introduction to SPH for fluids. For more detailed information, the
reader is referred to the excellent books by Hoover [2] 1 and Liu [3]. SPH is a method to solve
problems in Lagrangian continuum mechanics, where the governing partial differential equations
describe the co-moving evolution of the density ρ, coordinates r, velocity v, and energy per
unit mass e in terms of gradients of the velocity, pressure tensor2 P , and the heat-flux vector
Q = κ∇T , with thermal conductivity κ and temperature gradient ∇T .

dρ

dt
= −ρ∇ · v (1)

dv

dt
= −1

ρ
∇ · P (2)

de

dt
= −1

ρ
P : ∇v − 1

ρ
∇ ·Q (3)

SPH interpolates the set of field variables {ρ,v, e, P,Q} by means of kernel interpolation. For
any variable f(r), a local average at each coordinate ri is calculated according to

f(ri) =
∑
j

mj
fj
ρj
W (ri − rj). (4)

mj and fj are mass of particle j and value of the field f(r) at position rj , respectively. ρj is the
value of the mass density at rj . W (ri − rj) is a weight (or kernel) function of compact support,
which decays to zero within a range h comparable to a few typical inter-particle spacings. Here,
only radially symmetric weight functions W (ri−rj) ≡W (rij) are considered. Here, rij = ri−rj
and rij = ‖rij‖. The sum in Eqn. (4) formally extends over all particles, however, due to the
compact support of W , only particles for which ‖ri−rj‖ < h need to be considered. The process
of local averaging turns the coupled set of partial differential equations (1 – 3) into N uncoupled
ordinary differential equations, with N being the number of SPH particles used.

A particularly convenient feature of SPH is that neither mj nor fj is affected by the gradient
operator ∇. Because the mj and fj are themselves particle properties, the gradient operator
affects only the weight functions Wij . Therefore the gradient of a vector field f(r), evaluated at
position ri, is obtained as follows:

∇f(ri) = ∇
∑
j

mj
fj
ρj
Wij =

∑
j

mj
fj
ρj
∇jWij (5)

Due to the radial symmetry of W , ∇jWij =
rij
‖rij‖

dWij

drij
. This implies the antisymmetry property

of the SPH gradient, with ∇jWij = −∇iWji.

3.1. SPH approximation of the local density

The SPH expression for the local density is obtained by setting f(ri) ≡ ρ(ri) ≡ ρi:

ρi =
∑
j

mj
ρj
ρj
Wij ≡

∑
j

mj1Wij . (6)

The above expression is referred to as the partition of unity. Note that the local density, calcu-
lated at each particle, is a smoothed quantity with contributions from all particles within the
h-neighbourhood.

3.2. SPH approximation of the Navier-Stokes equation of motion

In order to obtain a computable expression for the equation of motion, i.e Eqn. (2), the gradient
of the pressure tensor needs to be evaluated. We start by noting that the divergence of the
quantity (P/ρ) can be rewritten using ordinary calculus as follows:

∇ · P
ρ
≡ − P

ρ2
· ∇ρ+

1

ρ
∇ · P (7)

1This user guide draws heavily on the book by Hoover [2]
2Note the definition of the tensor double product, A : B =

∑
ij AijBij

SPH-USER Documentation SPH Theory 6

This identity can be rearranged to provide a starting point for the SPH discretisation of the time
evolution of the particle velocity,

−1

ρ
∇ · P ≡ −∇ · P

ρ
+
P

ρ2
· ∇ρ. (8)

Inserting the above line into Eqn. (2), we obtain

dv

dt
= − P

ρ2
· ∇ρ−∇ · P

ρ
. (9)

The spatial derivatives, ∇ρ and∇· Pρ can be discretised using the SPH expression for the gradient

of a variable field, Eqn. (5):

∇ρ =
∑
j

mj∇jWij (10)

∇ · P
ρ

=
∑
j

mj
Pj
ρ2j
∇jWij (11)

The equation of motion for particle i now reads

dvi
dt

= −Pi
ρ2i
·
∑
j

mj∇jWij −
∑
j

mj
Pj
ρ2j
∇jWij , (12)

and is immediately written as an expression for pair-wise forces, suitable for implementation in
an Molecular Dynamics code:

fi = mi
dvi
dt

= −
∑
j

mimj

(
Pi
ρ2i

+
Pj
ρ2j

)
∇jWij . (13)

It is evident that this expression for the force is antisymmetric due to the antisymmetry property
of the SPH gradient. It therefore follows that this SPH discretisation preserves total linear
momentum.

3.3. SPH approximation of the Navier-Stokes continuity equation

The continuity equation, Eqn. (1), contains the gradient of the velocity field. As above, we begin
the SPH discretisation by using the identity

∇(vρ) = ρ∇v + v∇ρ, (14)

which enables us to rewrite the continuity equation as

dρ

dt
= ∇(vρ)− v∇ρ. (15)

Applying the SPH discretisation of the gradient of a vector field, Eqn. (5), we obtain:

dρi
dt

=
∑
j

mjvj∇jWij − vi
∑
j

mj∇jWij = −
∑
j

mjvij∇jWij (16)

3.4. SPH approximation of the Navier-Stokes energy equation

In order to derive an SPH expression for the time-evolution of the energy per unit mass, one
can, proceed in analogy to the above steps by evaluating the divergence of the RHS of Eqn. (3).
Here, we only quote the final result:

mi
dei
dt

= −1

2

∑
j

mimj

(
Pi
ρ2i

+
Pj
ρ2j

)
: vij∇jWij −

∑
j

mimj

ρiρj

(κi + κj)(Ti − Tj)
r2ij

rij · ∇jWij (17)

SPH-USER Documentation SPH Theory 7

3.5. SPH artificial viscosity

Numerical integration of the compressible Navier-Stokes equations is generally unstable in the
sense, that infinitesimally small pressure waves can steepen due to numerical artifacts and turn
into shock waves. In order to suppress this source of instability, Monaghan introduced an exten-
sion of the von Newman-Richter artificial viscosity into SPH. An additional viscous component
Πij is introduced into the SPH force expression, Eqn. (13),

fi = mi
dvi
dt

= −
∑
j

mimj

(
Pi
ρ2i

+
Pj
ρ2j

+ Πij

)
∇jWij , (18)

with

Πij = −αh ci + cj
ρi + ρj

vij · rij
r2ij + εh2

. (19)

Here, ci and cj are the speed of sound of particles i and j, α is a dimensionless factor controlling
the dissipation strength, and ε ' 0.01 avoids singularities in the case that particles are very close
to each other. For correct energy conservation, the artificial viscosity must be included in the
time-evolution of the energy:

mi
dei
dt

= −1

2

∑
j

mimj

(
Pi
ρ2i

+
Pj
ρ2j

+ Πij

)
: vij∇jWij −

∑
j

mimj

ρiρj

(κi + κj)(Ti − Tj)
r2ij

rij · ∇jWij

(20)
Note that the artificial viscosity can be understood [4] in terms of an effective kinematic viscos-
ity ν:

ν =
αhc

8
(21)

3.6. SPH laminar flow viscosity

While the artificial viscosity description usually gives good results for turbulent flows, the spatial
velocity profiles may be inaccurate for situations at low Reynolds numbers. To estimate the SPH
viscous diffusion term, Morris et. al (1997) [6] resorted to an expression for derivatives similarly
as used in computations for heat conduction. The viscous term in the Navier-Stokes equations
is now estimated as: (

1

ρ
∇ · µ∇v

)
i

=
∑
j

mj(µi + µj)rij · ∇jWij

ρiρj(r2ij + εh2)
vij , (22)

with the dynamic viscosity µ = ρν. The final momentum equation reads:

fi = −
∑
j

mimj

(
Pi
ρ2i

+
Pj
ρ2j

)
∇jWij +

∑
j

mimj(µi + µj)vij
ρiρj

(
1

rij

∂Wij

∂ri

)
, (23)

For correct energy conservation, the viscous entropy production can be included in the time-
evolution of the energy as follows:

mi
dei
dt

= −1

2

∑
j

mimj

(
Pi
ρ2i

+
Pj
ρ2j

)
: vij∇jWij −

1

2

∑
j

mimj(µi + µj)

ρiρj

(
1

rij

∂Wij

∂ri

)
v2ij

−
∑
j

mimj

ρiρj

(κi + κj)(Ti − Tj)
r2ij

rij · ∇jWij

(24)

Boundaries for laminar flows can be performed simply by prescribed fixed particles which partic-
ipate in the SPH summations, but note that the despite the zero velocity of these particles, the
SPH interpolated velocity at that point can be non-zero. This results in errors due to boundary
conditions. One should be aware that the timestep in laminar flows can be restricted by the

SPH-USER Documentation SPH Theory 8

viscous diffusion, rather than by the CFL criterion3. A stable simulation should therefore fulfil:

δt < 0.125
h2

ν
. (25)

3The Courant-Friedrichs-Lewy (CFL) criterion is a necessary but not necessarily sufficient condition for the
convergence of the finite-difference approximation of a given numerical problem. In the context of SPH it is
typically formulated as δt ≤ 0.3c/h, where c is the speed of sound.

SPH-USER Documentation Implementation of SPH in LAMMPS 9

4. Implementation of SPH in LAMMPS

4.1. Data structure

LAMMPS provides data structures for forces, positions and velocities. SPH requires at least
four new per-particle variables: local density ρ, internal energy4 E = me, and their respective
time derivatives ρ̇ and Ė. In order to add support for these quantities, a new data structure was
created which can be accessed using the following command:

atom_style meso

This atom_style also defines a per-particle heat capacity, such that a per-particle temperature
Ti = Ei/Cv,i can be calculated. With both ρ and T available, complete equations of state5 are
supported. Additionally, atom_style meso defines an extrapolated velocity, which is an estimate
of a velocity consistent with the positions at the time when forces are evaluated.

4.2. Time stepping

LAMMPS uses a Velocity-Verlet scheme to perform time integration:

1a) vi(t+ 1
2δt) = vi(t) + δt

2mi
fi(t)

1b) ri(t+ δt) = ri(t) + δtvi(t+ 1
2δt)

2) – calculate new forces fi(t+ δt) –

3) vi(t+ δt) = vi(t+ 1
2δt) + δt

2mi
fi(t+ δt)

This integration scheme cannot directly be used with SPH because the velocities lag behind
the positions by 1

2δt when the forces are computed. This leads to poor conservation of total
mass and energy because the SPH expressions, Eqn. (16) and Eqn. (17) depend explicitly on the
velocity. This situation can be improved by computing an extrapolated velocity,

ṽi(t+ δt) = vi(t) +
δt

mi
fi(t), (26)

prior to the force computation, and basing all SPH expressions on ṽ. This extrapolation, how-
ever, is only accurate to O(δt). With the added time-evolution of the local density and internal
energy, the complete integration scheme reads:

1a) vi(t+ 1
2δt) = vi(t) + δt

2mi
fi(t)

1b) ṽi(t+ δt) = vi(t) + δt
mi

fi(t)

1c) ρi(t+ 1
2δt) = ρi(t) + δt

2 ρ̇i(t)

1d) Ei(t+ 1
2δt) = Ei(t) + δt

2 Ėi(t)

1e) ri(t+ δt) = ri(t) + δtvi(t+ 1
2δt)

2) – calculate fi(t+ δt), ρ̇i(t+ δt), Ėi(t+ δt) –

3a) ρi(t+ δt) = ρi(t+ 1
2δt) + δt

2 ρ̇i(t+ δt)

3b) Ei(t+ δt) = Ei(t+ 1
2δt) + δt

2 Ėi(t+ δt)

3c) vi(t+ δt) = vi(t+ 1
2δt) + δt

2mi
fi(t+ δt)

The splitting of the time-evolution of ρ and E into two separate updates is in analogy with
the time integration of v. Simple Euler integration for ρ and E would lead to poor energy
conservation. The corresponding command to perform the above time-integration is:

fix fix_ID group_ID meso

4We store the internal energy per particle, not the internal energy per unit mass per particle.
5A complete equation of state is not only a function of density, but also of temperature.

SPH-USER Documentation Implementation of SPH in LAMMPS 10

4.3. Local density calculation

The local density ρ can be (re-)initialised in two ways:

• By density summation: The SPH density is calculated from scratch using Eqn. (6) by
invoking the pair_style sph/rhosum n command:

pair_style sph/rhosum

pair_coeff I J h

Here, I and J are the types of SPH particles for which ρ is to be calculated. n is the time-
step period of summation, i.e., summation is performed every n time-steps. During those
time-steps when this pair_style is not invoked, the usual density continuity equation is
used to update ρ. If n is 0, ρ is only computed once at the beginning of a run. h is the
range of the kernel function, which is taken as the following polynomial:

W (r < h) =
1

s

[
1−

(
1

h

)2
]4
. (27)

Here, s is a normalisation constant which depends on the number of spatial dimensions.
This particular form of the kernel function is very appealing from a computational per-
spective, as it does not require the evaluation of a square root.

• By assigning ρ directly using a set command. The local density can be assigned prior to
a run using

set style ID meso_rho d

style, ID are documented in the LAMMPS users’ guide. d is the value of ρ.

4.4. Equation of State

The equation of state (EOS) determines pressure as a function of local density ρ and temperature.
The following equations of state (EOS) are implemented as pair_style commands:

4.4.1. Tait’s equation of state with artificial viscosity

the Tait equation of state,

P (ρ) =
c20ρ0

7

[(
ρ

ρ0

)7

− 1

]
(28)

is an incomplete EOS devised to model water at ambient conditions. c0 and ρ0 are the sound
speed and density at zero applied stress. It can be selected using

pair_style sph/taitwater

pair_coeff I J rho_0 c_0 alpha h

Here, I and J are the types of SPH particles which interact according to this EOS. rho_0 is ρ0,
c_0 is c0, alpha sets the strength of the artificial viscosity according to Eqn. (19), and h is the
range of the Lucy kernel function

W (r < h) =
1

s

[
1 + 3

r

h

] [
1− r

h

]3
(29)

Note that, because rho_0 and c_0 are defined on a per-type basis, you need to specify the
pair_coeff I I and the pair_coeff J J lines before an pair_coeff I J line.

SPH-USER Documentation Implementation of SPH in LAMMPS 11

4.4.2. Tait’s equation of state with laminar viscosity

The Tait EOS can also be combined with Morris’ expression for laminar viscosity, Eqn. 22 instead
of artificial viscosity. The corresponding syntax is:

pair_style sph/taitwater/morris

pair_coeff I J rho_0 c_0 alpha h

Here, α is the dynamic viscosity with units Pa s.

4.4.3. Ideal gas equation of state

The ideal gas equation of state reads

P (ρ, e) = (γ − 1) ρe (30)

Here, γ = Cp/CV is the heat capacity ratio. In this implementation, γ = 1.4, corresponding to
dry air. This EOS is selected using the commands

pair_style sph/idealgas

pair_coeff I J alpha h

Here, I and J are the types of SPH particles which interact according to this EOS. alpha sets
the strength of the artificial viscosity according to Eqn. (19), and h is the range of the Lucy
kernel function, Eqn. (29).

4.4.4. Lennard-Jones equation of state

This EOS is the continuum mechanics equivalent to the Lennard-Jones pair potential:

u(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (31)

The EOS is implemented as a polynomial using the parametrisation of Ree [7], with the Lennard-
Jones parameters ε and σ set to unity. It is selected using the commands

pair_style sph/lj

pair_coeff I J alpha h

Here, I and J are the types of SPH particles which interact according to this EOS. alpha sets
the strength of the artificial viscosity according to Eqn. (19), and h is the range of the Lucy
kernel function, Eqn. (29).

4.5. Heat conduction

Thermal conductivity between SPH particles is enabled using the following command:

pair_style sph/heatconduction

pair_coeff I J D h

Here, I and J are the types of SPH particles which interact according to this EOS. D = κm/(CV ρ)
is the heat diffusion coefficient with units length2/time. h is the range of the Lucy kernel function,
Eqn. (29).

4.6. Boundary conditions

In macroscopic simulations, it is often desirable to have boundary conditions which constrain a
fluid to a certain region in space. Such boundary conditions are required to be stationary. A
possible way of generating hard boundaries is to employ one of the various fix wall/* commands
available in the main LAMMPS distribution. However, the use of these walls results in poor
energy conservation. It is comparatively better to use stationary SPH particles as boundary
conditions, of which only the internal energy E and the local density ρ is integrated. A suitable
integration fix is provided by

fix fix_ID group_ID meso/stationary.

SPH-USER Documentation Implementation of SPH in LAMMPS 12

4.7. Accessing SPH variables for initialisation and output

4.7.1. Initialisation

Internal energy E, heat capacity CV , and local density ρ can be set using the following commands:

• set style ID meso_e d

• set style ID meso_cv d

• set style ID meso_rho d

style, ID are documented in the LAMMPS users’ guide. d is the value of E, CV , or ρ respec-
tively. Alternatively, these variables can be read from a LAMMPS data file. The required line
format for atom_style meso in the Atoms section of the data file is:

atomID atom-type ρ E CV x y z

If used in conjunction with atom_style hybrid, the required information is ρ E CV .

4.7.2. Output

The per-particle SPH variables internal energy E, local density ρ, and local temperature
T = E/CV can be accessed using the following compute commands:

• compute compute_ID group_ID meso_e/atom

• compute compute_ID group_ID meso_rho/atom

• compute compute_ID group_ID meso_t/atom

These computes return a vector of length N , with N being the number of particles present in
the system. These vectors can then be output via the usual LAMMPS mechanisms, e.g. via the
dump custom command.

SPH-USER Documentation Validation tests 13

5. Validation tests

5.1. Heat conduction

This example considers a 2d bar of SPH particles, with dimensions 100 cm × 10 cm and an
inter-particle spacing of 1 cm. The left half is assigned an internal energy of 1 J per particle,
the right half 2 J per particle. Heat flows from right to left with a heat diffusion coefficient of
1.0×10−4 m2s−1, via the sph/heatconduction pair style. There is neither potential nor kinetic
energy present in this simulation, so that energy conservation can be monitored by tracking the
total internal energy, computed in variable ie. The energy profile is compared to an analytic
solution after 4.0 s. This example is available with the distribution of the SPH-USER package.

5.1.1. Input script

1 dimension 2

2 units si

3 atom_style meso

4 boundary f p p

5

6 # create the system

7 lattice sq 0.01

8 region box block 0 100 0 10 0 0.1

9 create_box 1 box

10 create_atoms 1 box

11 mass 1 1.0e-5

12

13 # define left & right regions, assign internal energies

14 region left block EDGE 49.9 EDGE EDGE EDGE EDGE

15 region right block 50 EDGE EDGE EDGE EDGE EDGE

16 set region left meso_e 1.0 # internal energies

17 set region right meso_e 2.0

18

19 # Note: local density rho should correspond to mass density

20 # of the system. Otherwise poor results are obtained.

21 set group all meso_rho 0.1 # 0.1 = 1.e-5/(0.01)^2

22

23 pair_style sph/heatconduction

24 # I | J | diffusion coeff. | cutoff

25 pair_coeff 1 1 1.0e-4 2.0e-2

26

27 # compute internal energy per particle & sum up

28 compute ie_atom all meso_e/atom

29 compute ie all reduce sum c_ie_atom

30

31 thermo 10

32 thermo_style custom step temp c_ie

33 timestep 0.25e-1

34 neighbor 0.2e-2 bin

35

36 # time integration: particles do not move in this setup

37 fix integrate_fix all meso/stationary

38

39 dump dump_fix all custom 10 dump.heat id type x y z c_ie_atom

40 dump_modify dump_fix first yes

41 run 160

42 undump dump_fix

SPH-USER Documentation Validation tests 14

5.1.2. Results

Figure 1 shows the final simulation snapshot, with some of the heat redistributed from the right
to the left.

The analytic solution to this problem is obtained from the 1d diffusion equation:

E(x, t) = E0
l +

E0
r − E0

l

2
erf

(
x− xc√

4αt

)
(32)

Here, E0
l and E0

r are the initial energies on the left and right sides, respectively. xc is the contact
position between cold and hot regions, α is the diffusion coefficient, and t is time. As shown in
Fig. 2, there is good agreement between the SPH-discretised simulation results and the analytic
solution.

Figure 1: Simulation snapshot for the heat conduction example at t = 4.0 s. Colour-coding
shows the internal energy per particle.

Figure 2: Comparison of the SPH results for the internal energy per particle after t = 4.0 s with
the analytic solution.

SPH-USER Documentation Validation tests 15

5.2. Shock wave structure

This example considers the solution of a quasi-1d shock wave problem in 2 or 3 spatial dimensions.
It is adapted from Monaghan’s investigation of the performance of SPH for a 1d shock wave
problem [5]. The SPH results are compared with an exact numerical solution.

In reduced units, the initial conditions for the shock problem are defined by two regions of an
ideal gas, a high density region on the left with p = ρ = 1 in contact with a low density on the
right with p∗ = ρ = 0.25. As the high density gas expands into the low density region, a shock
wave travels to the right while a rarefaction wave moves to the left. In 2d (3d), SPH particles
are arranged on a square (simple cubic) lattice with spacing 1, extending from x = −100..150,
y = −4..4 (and z = −4..4 in 3d). Particles with a negative x-coordinate are high-density particles
with m = 1, and particles with a positive x-coordinate are low-density particles with m = 0.25.
We use density summation every timestep and a value for the artificial viscosity of α = 0.75.
The initial setup, is shown in Fig. 3.

Figure 3: Initial setup for the shock wave problem. Colour represents mass density with red
corresponding to ρ = 1 and blue to ρ = 0.25.

5.2.1. Results

SPH results are compared to an exact solution based on a numerical solution of the corresponding
Riemann problem. As shown in Fig. 4, the overall agreement for the mass density is quite
satisfactory, with the SPH results being smoothed out over a distance ' h. Total energy, i.e. the
sum of kinetic and internal energy is conserved with an accuracy of about one part per million.

Figure 4: SPH and exact solution setup for the shock wave problem at t = 20.

SPH-USER Documentation Validation tests 16

5.2.2. Input script

This is the input script for the solution of the quasi 1d shock wave problem in 3 spatial dimension:

1 atom_style meso

2 boundary s p p

3

4 region box block -100 150 -4 4 -4 4 units box

5 create_box 2 box

6 lattice sc 1.0

7 create_atoms 1 box

8

9 region left block EDGE 0.0 EDGE EDGE EDGE EDGE units box

10 region right block 1 EDGE EDGE EDGE EDGE EDGE units box

11 set region right type 2

12

13 mass 1 1

14 mass 2 0.25

15 set type 1 meso_e 2.5 # internal energy corresponding to p=1, rho=1

16 set type 2 meso_e 0.625 # internal energy corresponding to p=0.25, rho=0.25

17 set type 1 meso_rho 1.0

18 set type 2 meso_rho 0.25

19

20 pair_style hybrid/overlay sph/rhosum 1 sph/idealgas

21 pair_coeff * * sph/rhosum 4.0

22 pair_coeff * * sph/idealgas 0.75 4.0

23

24 compute rhoatom all meso_rho/atom

25 compute ieatom all meso_e/atom

26 compute emeso all reduce sum c_ieatom # total internal energy

27 compute ke all ke

28 variable etot equal c_ke+c_emeso # total energy

29

30 # dump positions and local density

31 dump dump_id all custom 100 dump.3d id type x z y c_rhoatom

32 dump_modify dump_id first yes

33

34 neighbor 0.5 bin

35 neigh_modify every 5 delay 0 check yes

36 thermo 10

37 thermo_style custom step c_ke c_emeso v_etot

38 thermo_modify norm no

39

40 fix integration_fix all meso

41 fix 1 all setforce NULL 0.0 0.0 # treat as a quasi 1d problem

42 timestep 0.05

43 log log.3d

44 run 400 # run for t=20

SPH-USER Documentation Validation tests 17

5.3. Collapse of a water column

This example shows a prototypical test for SPH: the collapse of a water column in a rectangular
container with added obstacles [1].

Boundary conditions are realised as SPH particles, which are time-integrated only in the local
density and internal energy, but remain stationary. These boundary conditions are shown in
grey in Fig. 5. Water is modelled using Tait’s EOS with c = 10 m/s, ρ0 = 1000 kg/m3, and a
value for the artificial viscosity of α = 10. In order to deal efficiently with the time integration,
a variable timestep is used: δt is chosen such that the fastest particle may move no more than
a distance of 0.0005 m, or 5/300 h. Additionally, a CFL criterion with δt < 0.1h/c is employed.

Figure 5: Simulation snapshots: colour represents mass density. The initial configuration (1)
shows a water column with width, height = 1 m × 4 m embedded in a container of stationary
particles (grey). Gravity imposes a downward force. As the water column collapses, a wave
splashes over a wedge shaped obstacle and hits the right container wall (2-5). Snapshot (6)
shows the equilibrium configuration after 9.4 s.

SPH-USER Documentation Validation tests 18

5.3.1. Input script

1 atom_style meso

2 dimension 2

3 boundary f f p

4 read_data data.initial # read particle geometry from data file

5

6 variable h equal 0.03 # SPH smoothing length

7 variable c equal 10.0 # soundspeed for Tait’s EOS

8 variable dt equal 0.1*${h}/${c} # CFL criterion for upper limit of timestep

9 variable nrun equal 15.0/${dt} # number of timesteps to run

10

11 group bc type 2 # assign group name "bc" to boundary particles (type 2)

12 group water type 1 # assign group name "water" to water particles (type 1)

13

14 # use hybrid pairstyle which does density summation with cutoff ${h} every timestep (1)

15 pair_style hybrid/overlay sph/rhosum 1 sph/taitwater

16 # use rho_0=1000, soundspeed ${c}, art. viscosity=1.0, smoothing length ${h}

17 pair_coeff * * sph/taitwater 1000.0 ${c} 1.0 ${h}

18 pair_coeff 1 1 sph/rhosum ${h} # only do density summation for water

19

20 # add gravity. This fix also computes potential energy of mass in gravity field.

21 fix gfix water gravity -9.81 vector 0 1 0

22

23 # computes local density & internal energy, sum total energy

24 compute rho_peratom all meso_rho/atom

25 compute e_peratom all meso_e/atom

26 compute esph all reduce sum c_e_peratom

27 compute ke all ke

28 variable etot equal c_esph+c_ke+f_gfix

29

30 # use a variable timestep, such that any particle may travel only

31 # a maximum of 0.0005 distance units per timestep

32 fix dtfix all dt/reset 1 NULL ${dt} 0.0005 units box

33

34 # time-integrate position, velocities, internal energy and density of water particles

35 fix integrate_water_fix water meso

36

37 # time-integrate only internal energy and density of boundary particles

38 fix integrate_bc_fix bc meso/stationary

39 dump dump_id all custom 100 dump.lammpstrj id type xs ys zs\

40 c_rho_peratom c_e_peratom fx fy

41 dump_modify dump_id first yes

42 thermo 10

43 thermo_style custom step ke c_esph v_etot f_gfix press f_dtfix[1] f_dtfix

44 thermo_modify norm no

45

46 neigh_modify every 5 delay 0 check no

47 variable skin equal 0.3*${h}

48 neighbor ${skin} bin # set Verlet list skin distance

49 run ${nrun}

SPH-USER Documentation Validation tests 19

5.3.2. Results

The importance of a variable timestep is demonstrated in Fig. 6. If a fixed timestep were
used instead, it would need to be set to the smallest value attained in that figure in order to
achieve the same degree of energy conservation. In contrast, a variable timestep only reduces δt
when it is needed, e.g. during the highly turbulent collapse of the column, and not during the
comparatively well-ordered flow afterwards. Fig. 7 shows that small timesteps correspond to the
initial simulation regime, when kinetic energy is converted into internal energy due to viscous
dissipation.

Figure 6: Variation of timestep size due to turbulent motion.

Figure 7: Distribution of total energy into kinetic, internal, and potential energy in the gravita-
tional field. Total energy is conserved to 22 parts per million.

SPH-USER Documentation Validation tests 20

5.4. Shear cavity flow

The shear cavity flow is a standard test for a laminar flow profile. Here, we consider a 2D
square lattice of fluid particles with the top edge moving at a constant speed of 10−3m/s. The
other three edges are kept stationary. The driven fluid inside is represented by Tait’s EOS with
Morris’ laminar flow viscosity. We use a kinematic viscosity of ν = 10−6m2/s. This simulation
produces a steady-state flow with a laminar vortex (see Fig. 8) after a few thousand cycles of
equilibration. The velocity profile along the vertical centerline of the cavity agrees quite well
with a Finite Difference solution (Fig. 9).

Figure 8: Simulations snapshot of the shear driven fluid filled cavity (upper boundary is moving
to the right) in steady state. Particles are colored according to their kinetic energy.

Figure 9: Non-dimensional horizontal particle velocities along the vertical centerline of the cavity.
For comparison, a finite difference solution is also shown.

SPH-USER Documentation Validation tests 21

5.4.1. Input script

1 dimension 2

2 units si

3 atom_style meso

4

5 # create simulation box

6 region box block -0.050e-3 1.044e-3 -0.05e-3 1.044e-3 -1.0e-6 1.0e-6 units box

7 create_box 3 box

8

9 # create fluid particles

10 region fluid block 0.0001e-3 0.999e-3 0.0001e-3 0.999e-3 EDGE EDGE side in units box

11 lattice sq 0.025e-3

12 create_atoms 1 region fluid

13

14 # create bottom, left, and right wall

15 region walls block 0.0001e-3 0.999e-3 0.0001e-3 EDGE EDGE EDGE side out units box

16 lattice sq2 0.025e-3

17 create_atoms 2 region walls

18

19 # create a driver strip of particles, which exerts shear forces on the fluid

20 region driver block EDGE EDGE 0.999e-3 EDGE EDGE EDGE side in units box

21 create_atoms 3 region driver

22

23 group fluid type 1

24 group walls type 2

25 group driver type 3

26 group integrate_full union fluid driver

27

28 mass 3 2.0e-7

29 mass 2 2.0e-7

30 mass 1 4.0e-7

31 set group all meso_rho 1000.0

32

33 # use Tait’s EOS in combination with Morris’ laminar viscosity.

34 # We set rho_0 = 1000 kg/m^3, c = 0.1 m/s, h = 6.5e-5 m.

35 # The dynamic viscosity is set to 1.0e-3 Pa s, corresponding to a kinematic viscosity of 1.0e-6 m^2/s

36 pair_style hybrid sph/taitwater/morris

37 pair_coeff * * sph/taitwater/morris 1000 0.1 1.0e-3 6.5e-5

38 pair_coeff 2 3 none # exclude interaction between walls and shear driver

39

40 compute rho_peratom all meso_rho/atom

41 compute e_peratom all meso_e/atom

42 compute ke_peratom all ke/atom

43 compute esph all reduce sum c_e_peratom

44 compute ke all ke

45 variable etot equal c_ke+c_esph

46

47 # assign a constant velocity to shear driver

48 velocity driver set 0.001 0.0 0.0 units box

49 fix freeze_fix driver setforce 0.0 0.0 0.0

50

51 # do full time integration for shear driver and fluid, but keep walls stationary

52 fix integrate_fix_full integrate_full meso

53 fix integrate_fix_stationary walls meso/stationary

54

55 dump dump_id all custom 100 dump.lammpstrj id type xs ys zs vx vy c_rho_peratom c_e_peratom

SPH-USER Documentation Validation tests 22

56 dump_modify dump_id first yes

57 thermo 100

58 thermo_style custom step c_esph v_etot

59 thermo_modify norm no

60

61 neighbor 3.0e-6 bin

62 timestep 5.0e-5

63 run 4000

SPH-USER Documentation References 23

References
[1] M. Gomez-Gesteira, B. D. Rogers, R. A. Dalrymple, and A. J. C. Crespo. State-of-the-art

of classical SPH for free-surface flows. Journal of Hydraulic Research, 48(extra):6—27, 2010.

[2] William G. Hoover. Smooth Particle Applied Mechanics : The State of the Art. World
Scientific, Singapore, 2006.

[3] G.-R. Liu and M. B. Liu. Smoothed Particle Hydrodynamics: a meshfree particle method.
World Scientific, 2003.

[4] Gonzalez L. M., Sanchez J. M., Macia F., and Souto-Iglesias A. Analysis of WCSPH laminar
viscosity models. 4th international SPHERIC workshop, Nantes, France, 2009.

[5] J.J Monaghan and R.A Gingold. Shock simulation by the particle method SPH. Journal of
Computational Physics, 52(2):374–389, 1983.

[6] J.P. Morris, P.J. Fox, and Y. Zhu. Modeling Low Reynolds Number Incompressible Flows
Using SPH. Journal of Computational Physics, 136:214–226, 1997.

[7] Francis H. Ree. Analytic representation of thermodynamic data for the Lennard-Jones fluid.
The Journal of Chemical Physics, 73(10):5401, 1980.

[8] A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO - the
Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering,
18(1):015012, 2010.

