fix nvt/sphere command

Accelerator Variants: nvt/sphere/omp


fix ID group-ID nvt/sphere keyword value ...
  • ID, group-ID are documented in fix command

  • nvt/sphere = style name of this fix command

  • zero or more keyword/value pairs may be appended

  • keyword = disc

    disc value = none = treat particles as 2d discs, not spheres
  • NOTE: additional thermostat and dipole related keyword/value pairs from the fix nvt command can be appended


fix 1 all nvt/sphere temp 300.0 300.0 100.0
fix 1 all nvt/sphere temp 300.0 300.0 100.0 disc
fix 1 all nvt/sphere temp 300.0 300.0 100.0 drag 0.2
fix 1 all nvt/sphere temp 300.0 300.0 100.0 update dipole


Perform constant NVT integration to update position, velocity, and angular velocity each timestep for finite-size spherical particles in the group using a Nose/Hoover temperature thermostat. V is volume; T is temperature. This creates a system trajectory consistent with the canonical ensemble.

This fix differs from the fix nvt command, which assumes point particles and only updates their position and velocity.

The thermostat is applied to both the translational and rotational degrees of freedom for the spherical particles, assuming a compute is used which calculates a temperature that includes the rotational degrees of freedom (see below). The translational degrees of freedom can also have a bias velocity removed from them before thermostatting takes place; see the description below.

If the disc keyword is used, then each particle is treated as a 2d disc (circle) instead of as a sphere. This is only possible for 2d simulations, as defined by the dimension keyword. The only difference between discs and spheres in this context is their moment of inertia, as used in the time integration.

Additional parameters affecting the thermostat are specified by keywords and values documented with the fix nvt command. See, for example, discussion of the temp and drag keywords.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style “temp/sphere”, as if this command had been issued:

compute fix-ID_temp group-ID temp/sphere

See the compute temp/sphere command for details. Note that the ID of the new compute is the fix-ID + underscore + “temp”, and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID = thermo_temp. This means you can change the attributes of this fix’s temperature (e.g. its degrees-of-freedom) via the compute_modify command or print this temperature during thermodynamic output via the thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of thermo_temp will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that remove a “bias” from the atom velocities. E.g. to apply the thermostat only to atoms within a spatial region, or to remove the center-of-mass velocity from a group of atoms, or to remove the x-component of velocity from the calculation.

This is not done by default, but only if the fix_modify command is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute temp commands to determine which ones include a bias. In this case, the thermostat works in the following manner: bias is removed from each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added back in.

Styles with a gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed on the Accelerator packages page. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues.

These accelerated styles are part of the GPU, INTEL, KOKKOS, OPENMP, and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Build package page for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input script.

See the Accelerator packages page for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command for info on how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to this fix which will be used in its thermostatting procedure.

The cumulative energy change in the system imposed by this fix is included in the thermodynamic output keywords ecouple and econserve. See the thermo_style doc page for details.

This fix computes the same global scalar and global vector of quantities as does the fix nvt command.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.


This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the atom_style sphere command.

All particles in the group must be finite-size spheres. They cannot be point particles.

Use of the disc keyword is only allowed for 2d simulations, as defined by the dimension keyword.