\(\renewcommand{\AA}{\text{Å}}\)

fix temp/berendsen command

Accelerator Variants: temp/berendsen/kk

Syntax

fix ID group-ID temp/berendsen Tstart Tstop Tdamp
  • ID, group-ID are documented in fix command

  • temp/berendsen = style name of this fix command

  • Tstart,Tstop = desired temperature at start/end of run

    Tstart can be a variable (see below)
    
  • Tdamp = temperature damping parameter (time units)

Examples

fix 1 all temp/berendsen 300.0 300.0 100.0

Description

Reset the temperature of a group of atoms by using a Berendsen thermostat (Berendsen), which rescales their velocities every timestep.

The thermostat is applied to only the translational degrees of freedom for the particles, which is an important consideration for finite-size particles which have rotational degrees of freedom are being thermostatted with this fix. The translational degrees of freedom can also have a bias velocity removed from them before thermostatting takes place; see the description below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fs or ps - see the units command).

Tstart can be specified as an equal-style variable. In this case, the Tstop setting is ignored. If the value is a variable, it should be specified as v_name, where name is the variable name. In this case, the variable will be evaluated each timestep, and its value used to determine the target temperature.

Note

This thermostat will generate an error if the current temperature is zero at the end of a timestep. It cannot rescale a zero temperature.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a time-dependent temperature.

Note

Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time integration, this fix does NOT perform time integration. It only modifies velocities to effect thermostatting. Thus you must use a separate time integration fix, like fix nve to actually update the positions of atoms using the modified velocities. Likewise, this fix should not normally be used on atoms that also have their temperature controlled by another fix - e.g. by fix nvt or fix langevin commands.

See the Howto thermostat page for a discussion of different ways to compute temperature and perform thermostatting.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style “temp”, as if this command had been issued:

compute fix-ID_temp group-ID temp

See the compute temp command for details. Note that the ID of the new compute is the fix-ID + underscore + “temp”, and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID = thermo_temp. This means you can change the attributes of this fix’s temperature (e.g. its degrees-of-freedom) via the compute_modify command or print this temperature during thermodynamic output via the thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of thermo_temp will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that remove a “bias” from the atom velocities. E.g. to apply the thermostat only to atoms within a spatial region, or to remove the center-of-mass velocity from a group of atoms, or to remove the x-component of velocity from the calculation.

This is not done by default, but only if the fix_modify command is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute temp commands to determine which ones include a bias. In this case, the thermostat works in the following manner: bias is removed from each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added back in.


Styles with a gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed on the Accelerator packages page. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues.

These accelerated styles are part of the GPU, INTEL, KOKKOS, OPENMP, and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Build package page for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input script.

See the Accelerator packages page for more instructions on how to use the accelerated styles effectively.


Restart, fix_modify, output, run start/stop, minimize info

This fix writes the cumulative global energy change to binary restart files. See the read_restart command for info on how to re-specify a fix in an input script that reads a restart file, so that the fix continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the group used by this fix and by the compute should be the same.

The cumulative energy change in the system imposed by this fix is included in the thermodynamic output keywords ecouple and econserve. See the thermo_style doc page for details.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the same cumulative energy change due to this fix described in the previous paragraph. The scalar value calculated by this fix is “extensive”.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions

This fix can be used with dynamic groups as defined by the group command. Likewise it can be used with groups to which atoms are added or deleted over time, e.g. a deposition simulation. However, the conservation properties of the thermostat and barostat are defined for systems with a static set of atoms. You may observe odd behavior if the atoms in a group vary dramatically over time or the atom count becomes very small.

Default

none


(Berendsen) Berendsen, Postma, van Gunsteren, DiNola, Haak, J Chem Phys, 81, 3684 (1984).